
Force Computers GmbH
All Rights Reserved

This document shall not be duplicated, nor its contents used
for any purpose, unless written permission has been granted.

Copyright by Force Computers

Solaris VMEbus Driver
Programmer’s Guide

P/N 204936 Edition 9.0
January 2000

World Wide Web: www.forcecomputers.com
 24-hour access to on-line manuals, driver updates, and application notes
is provided via SMART, our SolutionsPLUS customer support program

that provides current technical and services information.

Headquarters
The Americas Europe Asia
Force Computers Inc.
5799 Fontanoso Way

San Jose, CA 95138-1015
U.S.A.

Tel.: +1 (408) 369-6000
Fax: +1 (408) 371-3382
Email support@fci.com

Force Computers GmbH
Prof.-Messerschmitt-Str. 1

D-85579 Neubiberg/München
Germany

Tel.: +49 (89) 608 14-0
Fax: +49 (89) 609 77 93
Email support@force.de

Force Computers Japan KK
Shiba Daimon MF Building 4F

2-1-16 Shiba Daimon
Minato-ku, Tokyo 105-0012

Japan
Tel.: +81 (03) 3437 3948
Fax: +81 (03) 3437 3968

Email smiyagawa@fci.com
NOTE

The information in this document has been carefully checked and is believed to be entirely reliable. Force Computers makes no warranty of any kind with regard
to the material in this document, and assumes no responsibility for any errors which may appear in this document. Force Computers reserves the right to make

changes without notice to this, or any of its products, to improve reliability, performance, or design.

Force Computers assumes no responsibility for the use of any circuitry other than circuitry which is part of a product of Force Computers GmbH. Force
Computers does not convey to the purchaser of the product described herein any license under the patent rights of Force Computers GmbH nor the rights of

others. All product names as mentioned herein are the trademarks or registered trademarks of their respective companies.

Contents

Table of Contents

. 27

 . . 28

 . . 43
Using This Manual . vii

1 Safety Notes . 1

2 Introduction . 5

2.1 Software Interface Features . 8

2.2 Comparing the Old-Style to the New-Style Driver . 9

2.2.1 vme_xxx() Functions . 9

2.2.2 Device Names . 10

2.2.3 ioctl() . 10

2.3 Examples . 14

3 Installation and Configuration Guide . 15

3.1 Configuration . 17

3.2 Basic Test of the Driver . 22

3.3 Troubleshooting . 23

3.4 Limitations . 25

4 Application Programmer’s Guide .

4.1 vmeplus .

4.1.1 open(), close() . 31

4.1.2 read(), write() . 32

4.1.3 mmap(), munmap() . 34

4.1.4 ioctl() . 36

4.1.5 vui_intr_ena(), vui_intr_dis() . 37

4.1.6 vui_rmw() . 39

4.1.7 vui_transfer_mode_set(), vui_transfer_mode_get() . 40

4.2 vmedma .
Solaris VMEbus Driver Page i

Contents

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

4.2.1 open(), close() . 44

4.2.2 read(), write() . 44

4.2.3 ioctl() . 46

4.2.4 vui_dma_malloc() . 47

4.3 vmefdma . 49

4.3.1 open(), close() . 50

4.3.2 read(), write() . 51

4.3.3 mmap(), munmap() . 53

4.3.4 ioctl() . 54

4.3.5 vui_fdma_malloc(), vui_fdma_free() . 55

4.4 vmedvma . 58

4.4.1 open(), close() . 59

4.4.2 read(), write() . 60

4.4.3 mmap(), munmap() . 61

4.4.4 ioctl() . 62

4.4.5 vui_slave_map(), vui_slave_unmap() . 63

4.5 vmectl . 68

4.5.1 open(), close() . 68

4.5.2 ioctl() . 69

4.5.3 vui_abort_signal(), vui_abort_wait() . 70

4.5.4 vui_acfail_signal(), vui_acfail_wait() . 72

4.5.5 vui_arb_mode_set(), vui_arb_mode_get() . 74

4.5.6 vui_board() . 75

4.5.7 vui_bus_rel_mode_set(), vui_bus_rel_mode_get() . 76

4.5.8 vui_bus_req_level_set(), vui_bus_req_level_get() . 77

4.5.9 vui_bus_req_mode_set(), vui_bus_req_mode_get() . 79

4.5.10 vui_interface() . 80

4.5.11 vui_intr_generate() . 81

4.5.12 vui_mbox_info() . 83

4.5.13 vui_mbox_set(), vui_mbox_remove() . 84

4.5.14 vui_mbox_wait() . 87

4.5.15 vui_mbox_control() . 88

4.5.16 vui_reg_base_set(), vui_reg_base_get() . 89
Page ii Solaris VMEbus Driver

Contents

. . 99

 99

. 104

107
4.5.17 vui_reg_read(), vui_reg_write() . 91

4.5.18 vui_reset() . 93

4.5.19 vui_sysfail_assert(), vui_sysfail_deassert() . 94

4.5.20 vui_(n)sysfail_wait(), vui_(n)sysfail_signal() . 95

4.5.21 vui_error_info() . 96

5 Device Driver Developer’s Guide .

5.1 VME Nexus Driver Configuration .

5.1.1 Master Window Properties . 99

5.1.2 Slave Window Property . 103

5.2 Device Driver Properties .

5.2.1 Non-Vectored Interrupter Handling . 104

5.2.2 VMEbus Mappings . 105

5.3 Nexus Driver Fault Handling .

5.4 VDI Functions . 108

5.4.1 Calling VDI functions . 109

5.4.2 vdi_arb_mode_set(), vdi_arb_mode_get() . 109

5.4.3 vdi_attach . 111

5.4.4 vdi_brel_set(), vdi_brel_get() . 112

5.4.5 vdi_breq_set(), vdi_breq_get() . 113

5.4.6 vdi_brl_set(), vdi_brl_get() . 114

5.4.7 vdi_dma_start() . 115

5.4.8 vdi_dmac_alloc_handle() . 120

5.4.9 vdi_error_info() . 121

5.4.10 vdi_event_setup(), vdi_event_release() . 122

5.4.11 vdi_info() . 125

5.4.12 vdi_intr_acknowledge() . 130

5.4.13 vdi_intr_generate() . 132

5.4.14 vdi_map(), vdi_unmap() . 132

5.4.15 vdi_map_abs(), vdi_map_regspec() . 134

5.4.16 vdi_mbox_attach(), vdi_mbox_detach() . 136

5.4.17 vdi_mbox_enable(), vdi_mbox_disable() . 141

5.4.18 vdi_mbox_getinfo() . 141
Solaris VMEbus Driver Page iii

Contents

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

0

161

. 162

 .
5.4.19 vdi_mbox_iblock_cookie(), vdi_mbox_hilevel() . 143

5.4.20 vdi_reg_read(), vdi_reg_write() . 144

5.4.21 vdi_regslave_set(), vdi_regslave_get() . 145

5.4.22 vdi_rmw() . 147

5.4.23 vdi_reg_space . 148

5.4.24 vdi_smem_alloc(), vdi_smem_free() . 148

5.4.25 vdi_smem_map(), vdi_smem_unmap() . 149

5.4.26 vdi_smem_enable() . 154

5.4.27 vdi_transfer_set(), vdi_transfer_get() . 154

5.4.28 vdi_virq_trigger(), vdi_virq_ackwait() . 156

6 VME Bus Properties . 159

6.1 Address Spaces – VME_BT_Axx and VME_BT_CRCSR . 16

6.2 Data Modes – VME_BT_Dxx .

6.3 Miscellaneous Bus Properties .

7 System Messages . 165

7.1 Panic Messages .. 165

7.2 Warnings . 166

7.3 Notices . 168

Product Error Report
Page iv Solaris VMEbus Driver

Tables and Figures

List of Tables and Figures

Page Tab./Fig.
History of manual editions . xi Tab. a
Fonts, notations and conventions . xiv Tab. b
Architecture of the Solaris VMEbus Driver package. 5 Fig. 1
Sample device access hierarchy . 6 Fig. 2
Changed device names for block and mblock devices 10 Tab. 1
ioctl() support by the new-style driver . 11 Tab. 2
Relating old-style to new-style driver ioctl() requests 13 Tab. 3
Mailbox Control operations . 88 Tab. 4
Data width encoding. 105 Tab. 5
Overview of VDI functions . 108 Tab. 6
Arbitration modes. 110 Tab. 7
Bus release modes . 112 Tab. 8
Bus request modes . 113 Tab. 9
VMEbus events . 123 Tab. 10
vdi_smem_req struct members . 150 Tab. 11
vdi_smem_lim struct members . 152 Tab. 12
Solaris VMEbus Driver Page v

Tables and Figures

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Page Tab./Fig.
Page vi Solaris VMEbus Driver

Using This Manual

ce
n 4

el-
an-
5

with
and
fol-
e to
Using This Manual

This section does not provide information on the product but on common
features of the manual itself:

• its structure

• special layout conventions

• and related documents

Audience of the Manual

This Programmer’s Guide is intended for software developers writing
applications and drivers for VMEbus hardware under Solaris x running
on a Force Computers CPU.

• The standard UNIX system calls and the VUI will be of importan
to application programmers and are primarily covered in sectio
“Application Programmer’s Guide” on page 27,

• whereas the DDI and VDI are important to VMEbus leaf driver dev
opers who will be called device driver developers in this user’s m
ual. The DDI and VDI interfaces are primarily covered in section
“Device Driver Developer’s Guide” on page 99.

Throughout this manual it is assumed that you are generally familiar
Solaris x and have a working knowledge of Solaris x device drivers
VMEbus device drivers, in particular. Since this manual refers to the
lowing documents, it is recommended that you have them availabl
consult (e.g. via http://docs.sun.com):

• Solaris x Driver Developer AnswerBook

• Solaris x Software Developer AnswerBook

• Solaris x Writing Device Drivers

• Solaris x DDI and DKI Kernel Functions

Note: This Programmer’s Guide describes the standard Solaris
VMEbus Driver package. Note that the Release Notes of the
respective version of the Solaris VMEbus Driver describe hardware
and software dependencies as well as limitations which may apply to
a specific CPU board for the release under consideration.
To understand a CPU board’s VMEbus behavior the technical
reference manual of the CPU board’s VMEbus interface chip (e.g.
the FGA-5000) and of the CPU board itself (e.g. the SPARC/CPU-
20VT) are recommended.
Solaris VMEbus Driver Page vii

Using This Manual

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

 on

old-

tal-
ult

ion 4

n 5

erties
ties”

m: see
Overview of the Manual

This Programmer’s Guide provides a comprehensive software guide to
the Force Computers VMEbus driver suite.

Note: Please take a moment to examine the “Table of Contents” to
see how this documentation is structured. This will be of value to you
when looking for information in the future.

It includes

• an overview of the safety notes: see section 1 “Safety Notes”
page 1

• a brief overview of the product and of changes as compared to
style VMEbus drivers: see section 2 “Introduction” on page 5

• the installation instructions for the driver suite: see section 3 “Ins
lation and Configuration Guide” on page 15. It includes the defa
configuration and initialization.

• a detailed description for user application programmers: see sect
“Application Programmer’s Guide” on page 27

• a detailed description for device driver developers: see sectio
“Device Driver Developer’s Guide” on page 99

• a description of the extended bustypes concept – called bus prop
– and the bus properties defined: see section 6 “VME Bus Proper
on page 159

• a description of the system messages and possible causes to the
section 7 “System Messages” on page 165
Page viii Solaris VMEbus Driver

Using This Manual

are
ware

hen

bus
d other
Glossary

The following terminology is used throughout this manual:

2eVME 2 edge VME

AM Address modifier

AS Address space

BBSY Bus busy signal

BCLR Bus clear

Bit A bit is either “set” (bit = 1) or cleared (bit = 0).

BLT VME block transfer (32 Bit)

BRL Bus request level

BRM Bus request mode

BREL Bus release mode (➤RAT, ➤ROC, ➤ROR, ➤RWD)

DMA Direct memory access

DVMA Direct virtual memory access

DMAC DMA controller

FDMA Fast direct memory access: when writing of fast DMA, the softw
method to increase the actual transfer speed is meant. It is not a hard
feature.

IACK Interrupt acknowledge

IRQ Interrupt request

Mailbox An address location on the VMEbus which triggers a local interrupt w
accessed.

MBLT VME multiplexed block transfer (64 Bit)

Bustype This is a set of properties which describes the way in which the VME
is accessed, i.e. the address and data modes, the transfer mode an
special conditions like write posting, data pre-fetch, etc.
Solaris VMEbus Driver Page ix

Using This Manual

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Local bus The I/O bus of the system to which the VME interface is attached (e.g.
SBus or PCI bus).

Pfn Page frame number. A physical on-board address divided by the MMU
page size.

PRI Prioritized (arbiter mode)

PRIRR Prioritized round robin (arbiter mode)

RMW Read-Modify-Write cycle

RAT Release on time-out

ROC Release on ➤BCLR

ROR Release on request

RORA Release on Register Accesses Interrupters (RORA): When a VMEbus
interrupt request has been recognized, the CPU performs a write access to
a control register in the interrupting device. In turn, the interrupting de-
vice removes its interrupt request.

RR Round robin (arbiter mode)

RSW Register slave window: This is a special slave window which enables ac-
cess to the VME interface registers from VMEbus side.

RWD Release when done

Semaphore A VME slave address provided by the local VME board which can be
read and set in one atomic operation.

SGL Single level (arbiter mode)

UAT Unaligned transfer

VDI VMEbus driver interface: This is one of the 2 parts of the interface be-
tween the VMEbus nexus driver and the VMEbus leaf drivers. The other
one is the standard Solaris DDI. All functions starting with vdi_ are col-
lectively called VDI functions.

VUI VME user application interface: This is one of the 2 parts of the interface
between a user application and the VMEbus leaf drivers. The other one
are standard UNIX system calls. All functions starting with vui_ are
collectively called VUI functions.
Page x Solaris VMEbus Driver

Using This Manual

E
he

y
re
 are
Publication History of the Manual

Table a History of manual editions

Ed. Date Description

1 July 1996 First print

2 August 1996 Added description of fast DMA driver vmefdma and
vui_reg_base_set/~get

3 October 1996 Added bustypes, message, and vui_mbox_info() descriptions

4 June 1997 Started delivery of this manual edition with software release 2.1

• Added new bus properties (former term: bus types): VME_BT_…
…_PAMC1, …_PAMC2, …_CRCSR, …_A40.

• Support of all VMEbus AM codes.

• Support of new devices: vmedma32te, vmefdma32te,
vmecrcsr16, vmecrcsr32, vmepam1d16, vmepam1d32,
vmepam2d16, and vmepam2d32.

• Enhanced fault handling: a siginfo structure is passed to the
process where possible.

• New configuration flag vme_event_warn.

• New functions:

– vui_… and vdi_… error_info() ,

– vdi_map… …_abs() and …_regspec()

– vdi_intr_acknowledge() and …_generate()

– vdi_virq… …_trigger() and …_ackwait()

• Programmable AM codes

• Support for CR/CSR address space

• VME shared memory can be allocated at fixed VME addresses.

• Thoroughly revised examples

• Revised terminology: to avoid misunderstandings, the FORC
COMPUTERS’ extension of the bus type concept now uses t
term “bus property” instead of “bus type”.

• Revised description of ERRORS within function descriptions: onl
the errors defined by the Solaris VMEbus Driver package a
described in this manual, for all others the respective man pages
referenced.
Solaris VMEbus Driver Page xi

Using This Manual

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

re
5 March 1998 Started delivery of this manual edition with software release 2.3:

• Revised the manual to also fit for UltraSPARC technology whe
the SBus is replaced by the PCI bus as local bus

• /platform/arch/kernel/drv documented as additional
installation directory

• VME_BT_USER replaced by VME_BT_NPRV, but VME_BT_USER
is still available

• Revised error values for VUI

• Extended UNIX system calls for vmedvma driver

• Added SMEM_DONTMAP flag for vui_slave_map(),
…_unmap() for vmedvma driver

• Revised examples

• ioctl_mbox_info_t structure instead of ioctl_mbox_t
for vui_mbox_info()

• New functions:

– vdi_dmac_alloc_handle()

– vdi_mbox_iblock_cookie(), vdi_mbox_hilevel()

– vui_nsysfail_wait(), ~signal().

• Updated description of mailbox interrupt levels

• Revised vmewin and vmewinX syntax which control master win-
dow allocation

• Added configuration option of the vmectl driver to control
ACFAIL and SYSFAIL handling related to the function groups

– vui_acfail_wait(), ~signal()

– and vui_(n)sysfail_wait(), ~signal().

• Added flag IMM_CALLBACK for vdi_event_setup().

Table a History of manual editions

Ed. Date Description
Page xii Solaris VMEbus Driver

Using This Manual

a-

e

uide
6.0 December 1998 Started delivery of this manual edition with software release 2.4:

• New VDI functions:

– vdi_attach()

– vdi_reg_space()

• New VUI function:

– vui_mbox_control()

• Updated interface description for

– vui_mbox_set()

– vui_mbox_wait()

– vui_arb_mode_set()

• Updated the description for vmedvma driver regarding the new fe
tures for mapping shared memory buffers to several processes.

• Updated description of /dev entries for vmeplus, vmedma and
vmefdma drivers.

• Updated configuration section of vmeplus driver regarding th
option to generate fixed-width VME accesses.

7.0 October 1999 • Changed syntax of vdi_info()

• Removed return values for vdi_success

• Added section “safety notes”

• Editorial changes

8.0 November 1999 • Editorial changes

9.0 January 2000 • Changed manual type from Instruction Set to Programmer’s G

Table a History of manual editions

Ed. Date Description
Solaris VMEbus Driver Page xiii

Using This Manual

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

g as

e

o

nd
e

a
he
e

Fonts, Notations and Conventions

Icons for Ease of Use: Safety Notes and Tips & Tricks

The following 3 types of safety notes appear in this manual. Be sure to al-
ways read and follow the safety notes of a section first – before actin
documented in the other parts of the section.

Danger Dangerous situation: serious injuries to people or severe damage to
objects.

Caution Possibly dangerous situation: slight injuries to people or damage to
objects possible.

Note: No danger encountered. Pay attention to important
information marked using this layout.

Table b Fonts, notations and conventions

Notation Description

0000.000016 Typical notation for hexadecimal numbers (digits ar
0 through F), e.g. used for addresses and offsets.
Note the dot marking the 4th (to its right) and 5th (t
its left) digit.

00008 Same for octal numbers (digits are 0 through 7)

00002 Same for binary numbers (digits are 0 and 1)

Program Typical character format used for names, values, a
the like that should be used typing literally the sam
word. Also used for on-screen-output.

Variable Typical character format for words that represent
part of a command, a programming statement, or t
like and that will be replaced by an applicable valu
when actually applied.

…set a flag… means: set the flag to 1.

…clear a flag… means: set the flag to 0.
Page xiv Solaris VMEbus Driver

Safety Notes
1 Safety Notes

This section provides safety precautions to follow when using the So-
laris VMEbus Driver. For your protection, follow all warnings and
instructions found in the following text.

General This Programmer’s Guide provides the necessary information to han-
dle the Solaris VMEbus Driver. As the product is complex and its us-
age manifold, we do not guarantee that the given information is
complete. In case you need additional information, ask your Force
Computers representative.

Application
Pro-
gramming

The handling capabilities for VMEbus write errors differ significant-
ly depending on the type of hardware architecture used. The default
reaction is therefore very conservative. Refer to the Release Notes for
information on whether the behavior can be modified for the hard-
ware under consideration.

Some VME leaf drivers may not be loaded on hardware that lacks
the corresponding hardware features. For example, the vmedma and
vmefdma drivers cannot be installed on S4 based boards, since the
S4 SBus-to-VME bridge has no DMA controller.

It is not possible to set the transfer modes for individual device nodes
or processes. At the moment when the transfer mode is set up, it is
valid for the whole driver instance. For the vmeplus driver this
means the following: if the transfer mode is set up for example for
/dev/vme32d32, it is valid for all /dev/vmexxdyy devices and
for all other processes using these devices. However, existing map-
pings will not be affected.

Some hardware needs properly aligned buffer and/or VMEbus ad-
dresses (refer to the Release Notes if this is true for the CPU board
you use). To allocate the DMA buffer, it is recommended to use the
VUI function vui_dma_malloc() which allocates properly
aligned memory. For VMEbus addresses, it is safe to use page-
aligned start addresses and sizes.

Depending on the system architecture, Solaris might not give the al-
located memory back for normal use. Refer to the Release Notes for
further information on allocating shared and DMA memory for the
CPU board under consideration.
Solaris VMEbus Driver Page 1

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Before it is possible to read or write DMA memory via the vmefdma
driver, it is necessary to allocate an I/O buffer via
vui_fdma_malloc(). Use the resulting ioaddr returned by
vui_fdma_malloc() as buf argument for read() or write()
accesses.

Never change the vmedvma configuration file.

The generation of interrupts is hardware dependent. Therefore, re-
fer to the Release Notes whether this feature is supported on the CPU
board under consideration.

Enabling or disabling the SYSRESET output and input signal is
switch-selectable. Therefore, check the CPU board’s switch setting to
ensure proper operation.

It may be that error events are dropped when using the flag
VME_SLEEP. This is the case when an error occurs in the time be-
tween issuing one of the above function calls and actually waiting for
an error event. To prevent such problems, the application program-
mer should set a timeout which interrupts the wait state from time to
time and then check the error counters.

Device
Driver

When changing a value for a programmable AM code in VME.conf,
the vmeplus.conf has to be updated as well so that the bus prop-
erty for the corresponding reg property reflects the new value in the
VME.conf file.

The VME_BT_PAMC1 and VME_BT_PAMC2 bus properties do not de-
fine the address space size, which means that a VME_BT_PAMCx bus
property literal must always be used in combination with a bus prop-
erty specifying an address space (VME_BT_Axx).

The VME nexus driver does not attempt to perform an IACK cycle
itself for interrupt levels at which such a non-vectored ISR is in-
stalled. However, hardware may require this. Therefore, the device
driver developer must use vdi_intr_acknowledge() to obtain
the interrupt vector, even if the vector is not used.

It is recommended to set the IMM_CALLBACK flag, because there is
no other way to request the current status of the ACFAIL and SYS-
FAIL lines.
Page 2 Solaris VMEbus Driver

Safety Notes
As of Solaris VMEbus Driver release 2.1 the vdi_map_abs() func-
tion is supported. It is strongly recommended to use
vdi_map_abs(), instead of vdi_map().

Depending on the hardware architecture, shared memory might be
allocated non-cached. Once non-cached memory has been allocated
by vdi_smem_alloc(), it may no longer be available for normal
use by the virtual memory system. This is because Solaris removes
memory from the free list once it has been set to non-cached. Howev-
er, the memory will be re-used for future slave memory requests.
Solaris VMEbus Driver Page 3

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Page 4 Solaris VMEbus Driver

Introduction

o a
s on
uch
gis-

iver
ons
ave
ers
an be

er

leaf

ter-
ro-

rts
aris
n,

ut
2 Introduction

The Solaris VMEbus Driver package is a Solaris software extension to
provide access to VMEbus devices for device drivers and user applica-
tions. It is intended for Solaris 2.5 or higher.
It logically consists of 2 main parts allowing for hardware and software
independence:

Leaf drivers,
device drivers

• the (VMEbus, SBus, PCI) leaf drivers: The term leaf driver refers t
device driver that accesses logically or physically existent device
an I/O bus, and implements the functions defined for the device, s
as transferring data to or from the device or accessing device re
ters.

There are several leaf drivers available in the Solaris VMEbus Dr
package, providing an application interface to the various functi
of the VMEbus bridge (like VMEbus master accesses, VMEbus sl
windows, operating the DMA controller, etc.). The Force Comput
leaf drivers are shipped as binaries and source code, so they c
used as sample leaf drivers and extended on demand.

The following leaf drivers are included in the Solaris VMEbus Driv
package: vmeplus, vmectl, vmedma, vmefdma, and vmedvma.
In this manual these leaf drivers are meant when writing about
drivers in general.

VMEbus nexus
driver

• the VMEbus nexus driver: a nexus driver is a bus driver which in
faces leaf drivers to a specific I/O bus. The VMEbus nexus driver p
vides the low-level kernel integration of the VMEbus. It suppo
customer-specific VMEbus leaf drivers developed using the Sol
VMEbus Driver package. E.g., it implements auto-configuratio
interrupt handling and memory mapping.

In this manual the VME nexus driver is meant when writing abo
nexus drivers in general.

Figure 1 Architecture of the Solaris VMEbus Driver package

User application

VUI
VME user interface

UNIX system calls

VMEbus leaf drivers

DDI
(device driver interface)

VDI
(VME driver interface)

VMEbus nexus driver

VMEbus Bridge Hardware
Solaris VMEbus Driver Page 5

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Introduction

f driv-
an-
gure

cess.
us
the

 de-
es to
vice’s

bus

e
ces.
Access hierarchy The VMEbus nexus driver provides the bus driver for the VMEbus which
is used to access a VMEbus device. The device-specific VMEbus leaf
driver handles the device itself. The following figure schematically
shows the access hierarchy: if a device is accessed, the device’s lea
er (dev2) calls the respective bus driver (VME) which may well call
other bus driver (SBus), as is the case for the dev2 device in the fi
shown.

Example

When dev2 is accessed, the dev2 leaf driver is called to do the ac
For this purpose, it calls the nexus driver for the SBus-to-VMEb
bridge which then itself calls another nexus driver – the one for
SBus bridge, and so on.

Figure 2 Sample device access hierarchy

VMEbus leaf
drivers

In more detail, every device-specific VMEbus leaf driver sets up the
vice registers necessary for a particular function and supplies routin
establish mappings, transfer data, handle interrupts, access the de
registers and other device-specific routines.
The routines provide user applications with the access to the VME
functions via device nodes which are special files in the /dev directory:

– system calls • either by the use of standard UNIX system calls such as open(),
read(), write(), mmap(), etc. Called for VMEbus devices thes
system calls allow for data transfers to and from the VMEbus devi

dev2 SBus leaf
driver for
dev1

SBus nexus driver
for SBus bridge

(CPU)

VMEbus

CPU

SBus

SBus bridge

SBus-to-VMEbus
bridge

Hardware Drivers

VME nexus driver
for SBus-to-
VMEbus bridge

dev1 dev3 VME leaf
driver for
dev2

VME leaf
driver for
dev3
Page 6 Solaris VMEbus Driver

Introduction

o-
ce.

nts

 on
rted
d via

vail-

s a
ig-
e

us
are

ce to
 the

ity
s-

he

y so
ning

 the
t of

es
c-
– VUI • or by calling many other VMEbus specific functions which are pr
vided by the VUI, the standard Force Computers VME user interfa
The VUI provides, for example, functions waiting for external eve
or disabling the receipt of interrupts.

The functionality of the VMEbus leaf drivers and of the VUI depends
the VMEbus nexus driver and its interfaces. Only the functions suppo
by these interfaces also are supported by the VMEbus leaf driver an
the VUI.
There are different leaf drivers for different accesses and functions a
able. Each leaf driver supports his own list of devices:

• vmeplus replaces Sun’s vmemem driver, it contains all the code
necessary to access VMEbus memory. Furthermore, it provide
functionality to handle VMEbus interrupts and forward them as s
nal to the calling process. vmeplus is a standard character devic
driver. The driver provides access to the devices /dev/vmexxdyy

• vmectl provides various control functions to program the VMEb
bridge device. Furthermore, it supports handling of various Hardw
signals like abort, sysfail, or acfail. The driver provides
access to the device /dev/vmectl.

• vmedma utilizes on-board VME DMA controller (DMAC), it con-
tains all the code necessary to initiate a transfer from user spa
VMEbus memory and vice versa. The driver provides access to
/dev/vmedma… devices.

• vmefdma (the fast DMA driver) has basically the same functional
as vmedma. By reducing the software overhead for initiating a tran
fer it may be significantly faster than vmedma, with the disadvantage
of a software interface which is not as flexible and convenient. T
driver provides access to the devices /dev/vmefdma….

• vmedvma allows a process to allocate and map on-board memor
that it can be accessed both from the VMEbus and processes run
locally. The driver provides access to the devices /dev/vmedvma….

VMEbus nexus
driver

Just as with the VMEbus leaf drivers, the nexus driver provides 2 inter-
faces for the on-top software layer (which are VMEbus leaf drivers), the
DDI and the VDI:

• The standard Solaris DDI (device driver interface) is described in
Solaris DDI documentation. It only provides a small segment ou
the full range of VME functions.

• The Force Computers specific VDI (VME driver interface) enhanc
the DDI and provides, for example, DMA and VME control fun
tions.
Solaris VMEbus Driver Page 7

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Software Interface Features Introduction

le

-

The VMEbus nexus driver and the VDI are operating system and hard-
ware dependent, but both always provide the same interfaces to the
VMEbus leaf drivers.

2.1 Software Interface Features

The following feature list may be limited due to hardware capabilities of
the CPU board on which the Solaris VMEbus Driver package is installed.
The limitations are described in the package’s Release Notes.

VME master
accesses

Address modes A16, A24, A32, CR/CSR, 2 programmab
AM codes

Single transfer sizes D8, D16, D32

Other transfer modes BLT, MBLT, 2eVME

Access mode supervisory/non-privileged, program/data

RMW cycles

VME slave
accesses

Address modes A16, A24, A32

Single transfer sizes D8, D16, D32

Other transfer modes BLT, MBLT, 2eVME

Access mode supervisory/non-privileged, program/data

Slave memory allocate, map to VMEbus, to kernel and to pro
cess

Write posting enable/disable

Enable VME access to register set and set VME address

DMA controller Queue and execute DMA controller requests

DMA buffer allocate and map to kernel

IRQs and signals VMEbus IRQ(s) receive, trigger, forward as signal

SYSFAIL react on, assert, clear

ACFAIL, ABORT react on

SYSRESET trigger

VME requester Bus request Levels 0…3, fair and demand mode

Bus release ROR, RWD, ROC, RAT

VME arbiter Arbitration mode Single level, round robin, priority, priority
round robin
Page 8 Solaris VMEbus Driver

Introduction Comparing the Old-Style to the New-Style Driver

m-

rface
ter-
es

p-

ers:

er

med

r-
2.2 Comparing the Old-Style to the New-Style Driver

Notes for
application
programmers

The following 2 changes should be noticed by application programmers:

• one concerns the change of device names

• the other concerns the use of ioctl().

For more information on the new-style driver for application progra
mers see section 3 “Application Programmer’s Guide” on page 23.

Notes for device
driver developers

The following should be noticed by device driver developers:

• There are no changes affecting the standard Solaris DDI.

• Changes have been made to the Force Computers specific inte
between the VMEbus nexus and the VMEbus leaf driver. This in
face is now called the VME Driver Interface – VDI. The chang
affect the vme_xxx() functions.

• The ioctl() requests have also been changed.

For more information on the new-style driver for device driver develo
ers see section 4 “Device Driver Developer’s Guide” on page 105.

Notes related to
existing leaf
drivers

The following list summarizes necessary changes to existing leaf driv

• Exclusively DDI-based leaf drivers run with the new-style driv
without change.

• Leaf drivers which use the vme_xxx() functions have to use the
respective vdi_xxx() functions, instead.

2.2.1 vme_xxx() Functions

Changes have been made to the 2 old-style driver functions na
vme_xxx(). They are no longer available:

• vme_dma_init() is no longer necessary

• and instead of using vme_dma_start() use
vdi_dma_start().

Mailboxes Mailbox access notification

Request/set addresses and VME access properties for Mailboxes

Miscellaneous Request CPU information (name, revision) and VME interface info
mation (name, type, interface bus, revision)

VMEbus error information.
Solaris VMEbus Driver Page 9

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Comparing the Old-Style to the New-Style Driver Introduction

UI

is
of

 be
use
ad,

 not
d

Concerning functionality (not call syntax) the VDI provides a superset of
the old-style vme_xxx() functions. Addtionally, contrary to the old-
style vme_xxx() functions the VDI is hardware independent.

2.2.2 Device Names

The device names for block and mblock devices have changed.

2.2.3 ioctl()

Both drivers, the old-style as well as the new-style driver support the
standard UNIX calls. Additionally the new-style driver supports the
VME User Interface – VUI. Within this interface there are several V
function calls which functionally replace the old-style ioctl(). Never-
theless, ioctl() is supported within the new style driver though it
strongly recommended to use the VUI function calls instead
ioctl().

The ioctl() interface has been substantially revised to no longer
CPU-board dependent. Moreover, it is no longer necessary to
ioctl() within an application because the VUI can be used inste
providing a hardware-independent VMEbus user interface.
Therefore:

• Applications which are based on the old-style driver and which do
use ioctl() will run on the new-style driver as well. For blt an
mblt transfers only the device names has to be changed.

• Applications which use ioctl() will

Table 1 Changed device names for block and mblock devices

Old devices names New device names

/dev/vmedma24d32b /dev/vmedma24blt

/dev/vmedma32d32b /dev/vmedma32blt

/dev/vmedma24d32mb /dev/vmedma24mblt

/dev/vmedma32d32mb /dev/vmedma32mblt

/dev/fvmedma24d32b /dev/vmefdma24blt

/dev/fvmedma32d32b /dev/vmefdma32blt

/dev/fvmedma24d32mblt /dev/vmefdma24mblt

/dev/fvmedma32d32mblt /dev/vmefdma32mblt
Page 10 Solaris VMEbus Driver

Introduction Comparing the Old-Style to the New-Style Driver

new

om-
hem

-
eth-
the
et of
age

the
 of
n

– either – as in the past – have to adapt the calls to the
ioctl()

– or – and this is the solution strongly recommended by Force C
puters (especially when developing new applications) – adapt t
to VUI functions.

Nevertheless, a list of all supported ioctl() calls follows.
For the new-style driver this set of ioctl() requests covers all support
ed Force Computers CPU boards. The VME nexus driver decides wh
er the ioctl() request makes sense or not. If it does not work on
CPU board under consideration, an error code is returned. But the s
ioctl() requests does not change. Thereby, only one driver pack
covers all supported Force Computers CPU boards.
For a detailed description, see the equivalent VUI function and
ioctl() description of the respective leaf driver. For an example
how to use ioctl() have a look at the VUI source code i
/opt/FRCvme/vui.

Table 2 ioctl() support by the new-style driver

Leaf driver Supported ioctl()

vmeplus VME_RMW
VME_TRANSFER_MODE_SET, …_GET
VME_INTR_ENA, …_DIS

vmedma VME_DMA_GET_STATUS
VME_DMA_INFO

vmefdma VME_FDMA_MAP, …_UNMAP
VME_DMA_GET_STATUS
VME_DMA_INFO
Solaris VMEbus Driver Page 11

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Comparing the Old-Style to the New-Style Driver Introduction
vmedvma VME_SLAVE_MAP, …_UNMAP
VME_SLAVE_SET

vmectl VME_REG_READ, …_WRITE
VME_REG_BASE_SET, …_GET
VME_ARB_MODE_SET, …_GET
VME_BRL_SET, …_GET
VME_BRM_SET, …_GET
VME_BREL_SET, …_GET
VME_INTR_GENERATE
VME_MBOX_SET, …_REMOVE
VME_MBOX_INFO
VME_MBOX_ENABLE, …_DISABLE
VME_MBOX_WAIT
VME_BOARD
VME_INTERFACE
VME_ABORT_INTR
VME_ACFAIL_INTR
VME_SYSFAIL_INTR
VME_SYSFAIL_ASSERT, …_DEASSERT
VME_RESET

Table 2 ioctl() support by the new-style driver (cont.)

Leaf driver Supported ioctl()
Page 12 Solaris VMEbus Driver

Introduction Comparing the Old-Style to the New-Style Driver
The following table shows the old-style ioctl() requests and the re-
spective new-style ioctl() requests. Note that the new-style driver
supports more ioctl() requests than listed. For more information
about the ioctl() requests of the new-style driver see the respective
ioctl() description of the related leaf driver and the related VUI call.

Table 3 Relating old-style to new-style driver ioctl() requests

ioctl() old-style ioctl() new-style

VME_MAP_SLAVE VME_SLAVE_MAP

VME_UNMAP_SLAVE VME_SLAVE_UNMAP

VME_SLAVE_SET_MAP VME_SLAVE_SET

VME_SET_SLAVE_WIN
VME_SET_SLAVEWIN

no longer necessary. Instead, the
new-style driver sets up the slave
window automatically.

VME_GET_SLAVE_WIN
VME_GET_SLAVEWIN

no longer necessary

VME_GET_SLAVEWPERR no longer available. To control
write posting errors, the new-style
driver can be configured via the
appropriate flag entry in
/etc/system (see section 2
“Installation and Configuration
Guide” on page 11) and via the
VME_TRANSFER_MODE_SET
ioctl() request.

VME_SET_REG
VME_SET_VSIA16BASE
VME_ENA_VSIA16

VME_REG_BASE_SET

VME_GET_REG
VME_GET_VSIA16BASE
VME_DIS_VSIA16

VME_REG_BASE_GET

VME_SET_VME_WIN no longer necessary. Instead, the
new-style driver sets up the mas-
ter window automatically.

VME_GET_VME_WIN no longer necessary.

SET_ABORT_PID VME_ABORT_INTR

VME_ASSERT_SYSFAIL VME_SYSFAIL_ASSERT

VME_NEGATE_SYSFAIL VME_SYSFAIL_DEASSERT

VME_SYSFAIL_STAT not available.

VME_DISWP VME_TRANSFER_MODE_SET
Solaris VMEbus Driver Page 13

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Examples Introduction

a-
2.3 Examples

The Solaris VMEbus Driver package includes examples for VME devic-
es. All examples are located in /opt/FRCvme/examples. The di-
rectory includes a Makefile to compile the examples and a README
file providing detailed information for each example – including inform
tion on further help provided.

VME_ENAWP VME_TRANSFER_MODE_SET

VME_INSTALL_MBOX VME_MBOX_SET
VME_MBOX_ENABLE

VME_REMOVE_MBOX VME_MBOX_DISABLE
VME_MBOX_REMOVE

VMEMBOX_WAIT
VME_MBOXWAIT

VME_MBOX_WAIT

VME_LED_SET not available.

VME_LED_GET not available.

Table 3 Relating old-style to new-style driver ioctl() requests (cont.)

ioctl() old-style ioctl() new-style
Page 14 Solaris VMEbus Driver

Installation and Configuration Guide

.
less
3 Installation and Configuration Guide

This section describes how to install the Solaris VMEbus Driver package
FRCvme for use with the Force Computers SPARC-based CPU boards
running Solaris-x. Other packages of this product are installed analogous.

Overview and
installation
directories

The name of the package is FRCvme. The standard installation path is
/opt. During installation the directory /opt/FRCvme is generated and
all drivers and driver configuration files are copied to /kernel/drv
and /platform/arch/kernel/drv and bound into the kernel. Fur-
thermore, the necessary header files and libraries (VUI-Library) are cop-
ied to the directories /usr/include/sys and /usr/lib. After a
successful installation, the system has to be rebooted so that the VME
drivers are loaded.

Check whether
already installed

Use pkginfo(1) to find out whether the driver is already installed:

pkginfo issues an error message if the FRCvme driver is not installed.
If an older version of the FRCvme package is already installed, it has to
be removed first and the system has to be rebooted before installing the
new version of the FRCvme package:

Installing the
package

Use pkgadd(1M) to install the driver. If you do not want to use the de-
fault installation, see also “Optional installation parameters” on page 16
If you want to install the package for a diskless client, see also “Disk
client” on page 16.
To install the driver the user must be root. The Solaris VMEbus Driver
is delivered on tape or CD-ROM.

pkginfo -l FRCvme

pkgrm FRCvme
shutdown -g0 -i6

Tape # pkgadd -d /dev/rmt/0
Solaris VMEbus Driver Page 15

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Installation and Configuration Guide

 is

ount
ec-
D 6

r in-

:

 ex-
 see

is in-
-

E-

ith-
am-
 be
red
CD-ROM If you use a CD-ROM for installation, the following 2 cases can occur:

• The volume manager is running. In this case, the CD-ROM
mounted automatically to the directory /cdrom.

• The volume manager is not running. In this case, you have to m
the CD-ROM first. As a mount point an already created empty dir
tory can be used. For example, for a CD-ROM device with SCSI I
(which is quite common) and mount point /cdrom enter:

mount -F HSFS -r /dev/dsk/c0t6d0s0 /cdrom

Diskless client If you want to install the package for a diskless client, you can eithe
stall it on the client’s server or on the client itself.

– on the client
itself

Before installation on a diskless client, check the share options on the
server host and the mount options on the client host (server
/etc/dfs/dfstab; client: /etc/vfstab). Usually, the filesystems
are exported as read-only filesystems, but the client’s root must be
ported to allow superuser read/write accesses. For more information
the Solaris user documentation.
It may be the case that some warnings are printed if the package
stalled on a diskless client (if /usr is mounted read-only). These warn
ings can be ignored safely (see next note).

Optional
installation
parameters

It is possible to install only part of the files provided by the Solaris VM
bus Driver package.

Example:

It may be required to install the Solaris VMEbus Driver package w
out loading and attaching the VMEbus drivers themselves (for ex
ple, on a development system without VMEbus interface). This can
accomplished by not installing the files which are planned to be sto
in /kernel/drv and /platform/arch/kernel/drv

CD-ROM with volume manager:

– not running # mount -f hsfs -r /dev/dsk/<scsi-device> <mount-point>
pkgadd -d <mount-point>/pkg

– running # pkgadd -d /cdrom/pkg

– on the client’s
server

pkgadd -d /dev/rmt/0 -R /export/root/<clientname>
Page 16 Solaris VMEbus Driver

Installation and Configuration Guide Configuration

fig-
ing
ird
The following steps describe how this is actually done:

1. Choose the files to be installed by choosing a combination of the 3
classes the Solaris VMEbus Driver is split up into:

– base denotes all files in /opt/FRCvme (this class is mandatory
and must not be omitted),

– targ denotes all files in /kernel/drv and /plat-
form/arch/kernel/drv (i.e. the VMEbus drivers to be
attached),

– sysfile denotes all files in /usr/include and /usr/lib.

2. Create a file /tmp/FRCvme.classes which only includes a sin-
gle line naming all classes which you want to install, e.g.:

CLASSES=”base sysfile”

This sample response file lists the classes base and sysfile but
omits targ so that the drivers will not be installed.

Note: Omitting the targ class will also suppress the verification
step that ensures that the driver package is installed on a supported
CPU board.

Note: It may be useful (but it is not a requirement) to omit the class
sysfile when installing on diskless clients where /usr is mounted
read-only. Otherwise, pkgadd displays some warnings, which can be
safely ignored.

Non-interactive
installation

To install the driver package without being prompted for input it is re-
quired to create a response file and pass it as argument to the pkgadd
command. For further information refer to the documentation of pk-
gask and pkgadd.

3.1 Configuration

The default configuration supports all features of the Solaris VMEbus
Driver package. Therefore:

• The following section is intended for advanced users, only.

• The information provided in this section is only necessary to con
ure the installed Solaris VMEbus Driver package when customiz
one of the delivered drivers or integrating a customized or a th
party leaf driver.
Solaris VMEbus Driver Page 17

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Configuration Installation and Configuration Guide

 is

de-
cribes

fully
.g.,
lica-
ach

e
 for
 the
ex-
E-

vice
he

por-

ver
ier-
itly
ple
• For all other users the installed Solaris VMEbus Driver package
ready for use right after the installation has been finished.

Delivered drivers This driver package consists of

• 1 VMEbus nexus driver named VME, and

• 5 VMEbus leaf drivers named vmeplus, vmectl, vmedma,
vmefdma, and vmedvma.

For each driver there is a configuration file named driver.conf in
/kernel/drv or /platform/arch/kernel/drv, for example,
VME.conf or vmeplus.conf. A standard configuration file for each
driver is included in the package. The standard configuration file
scribes the name and the class of the driver. If necessary, it also des
VMEbus ranges and interrupts.

Example:

The VMEbus access properties for the vmeplus driver are config-
ured in vmeplus.conf.

The standard configuration files have been designed to implement a
featured driver. If you want to change one of the configuration files, e
to include interrupts, see the respective man page and section 4 “App
tion Programmer’s Guide” on page 27 for a detailed description of e
leaf driver’s configuration.

The configuration file of the VMEbus nexus driver (VME.conf) may b
empty. Nevertheless, the VMEbus nexus driver supports properties
VME master ranges and VME slave ranges. If only the leaf drivers of
Solaris VMEbus Driver package are used together with the VMEbus n
us driver, the configuration file can remain as is. If, however, the VM
bus nexus driver is used with other leaf drivers, see section 5 “De
Driver Developer’s Guide” on page 99 for detailed information on t
configuration of the VMEbus nexus driver.

Tuning drivers The remaining part of this section describes variables which are im
tant to application programmers using leaf drivers.
Most variables specify a configuration detail of the VMEbus nexus dri
and thereby potentially affect all VMEbus leaf drivers (see “Access h
archy” on page 6). If a variable also refers to other drivers, it is explic
stated in the description of the variable given below (see for exam
vme_slave_diswp_flag and vme_master_default).

To set a variable variable, which refers to the driver driver, to the
value value, insert the following line in /etc/system (see also the
system(4) man page):
set driver:variable=value
Page 18 Solaris VMEbus Driver

Installation and Configuration Guide Configuration

 on

ors
r ex-
 and
Example:

Setting vme_diswp_flag and vme_master_default:

set VME:vme_diswp_flag=1
set VME:vme_master_default=0x08000000
set vmeplus:vme_master_default=0x08000000

vme_diswp_flag controls the status of global write posting for master access. If the flag is
cleared or not available, all drivers handle write posting for master ac-
cesses as defined elsewhere.

= 1 Write posting is disabled for every driver for master windows. Enabling
write posting via other flags or VUI functions is impossible.

vme_slave_diswp_flag controls the status of global write posting for slave window ac-
cess. It affects vmedvma. If the flag is cleared or not available, all drivers
handle write posting for slave windows as defined elsewhere.

= 1 Write posting is disabled for every driver for slave windows. Enabling
write posting via other flags or VUI functions is impossible.

vme_master_default sets the transfer mode of master windows. For valid values and a
general discussion on VME AM code generation see

• vme_types.h header file,

• section 4.1.7 “vui_transfer_mode_set(), vui_transfer_mode_get()”
page 40,

• and section 6 “VME Bus Properties” on page 159.

vme_master_default can be used

• for the VME nexus driver (VME), thereby affecting all VME leaf driv-
ers with the exception of vmeplus. Sample /etc/system entry
for enabling write posting:

set VME:vme_master_default=0x01000000

• for the vmeplus leaf driver, thereby only affecting vmeplus. This
default setting may get overridden by software. Sample /etc/sys-
tem entry for enabling write posting:

set vmeplus:vme_master_default=0x01000000

vme_mwperr_action defines how to react on a LocalBus-to-VME write-posted err
which cannot be back tracked to the originating process or driver. Fo
ample, this happens when write posting is enabled on the FGA-5000
a VMEbus access error occurs.
The following value list will be extended in future:

= 0 Print warning only (default).

= 1 Ignore LocalBus-to-VME posted write errors.

= 2 Panic on LocalBus-to-VME posted write errors.
Solaris VMEbus Driver Page 19

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Configuration Installation and Configuration Guide
vme_swperr_action defines how to react on a VME-to-LocalBus write-posted error
(VME-to-SBus errors cannot be back tracked to a process or driver):

= 0 Print warning only (default).

= 1 Ignore VME-to-LocalBus posted write errors.

= 2 Panic on VME-to-LocalBus posted write errors.

vme_uwerr_action defines how to react on a non-posted user write error (for example,
when the VMEbus is accessed via mmap()).

Note: The handling capabilities for VMEbus write errors differ
significantly depending on the type of hardware architecture used.
The default reaction is therefore very conservative. Refer to the
Release Notes for information on whether the behavior can be
modified for the hardware under consideration.

= 0 When a user access occurs, print a warning and send the SIGBUS (bus
error) signal.

= 1 Ignore VME-to-LocalBus non-posted user-write errors.

= 2 Send the SIGBUS (bus error) signal.

= 3 Panic.

= 4 Print a warning (default).

vme_kwerr_action defines how to react on a non-posted kernel write error.

Note: The handling capabilities for VMEbus write errors differ
significantly depending on the type of hardware architecture used.
The default reaction is therefore very conservative. Refer to the
Release Notes for information on whether the behavior can be
modified for the hardware under consideration.

= 0 Print a warning and send a SIGBUS (bus error) signal.

= 1 Ignore VME-to-LocalBus non-posted kernel write errors.

= 2 Send the SIGBUS (bus error) signal.

= 3 Panic.

= 4 Print a warning (default).

vme_fault_hndl_off controls whether the Solaris fault handling routines will not be
changed. This causes unpredictable results when VMEbus errors occur.

= 0 The Solaris fault handling routines may be changed (default).

= 1 The Solaris fault handling routines will not be changed.

vme_krerr_action defines how to react on kernel read faults:
Page 20 Solaris VMEbus Driver

Installation and Configuration Guide Configuration
= 0 copyout() reports an error and other accesses cause a bus error signal
to the process (default).

= 1 Same as 0, additionally a warning is printed.

vme_rerr_stall defines how to react on read errors. When a VMEbus memory location
is read and a bus error occurs, the processor issues a synchronous (pre-
cise) trap. This activates the error recovery function of the VMEbus
nexus driver, which sends a SIGBUS signal to the offending process.
Depending on vme_rerr_stall, 2 continuations are possible:

= 0 This setting is only available on sun4m hardware architectures: Skip the
machine instruction and resume the process with the next instruction.
This results in the original read instruction returning data which seem to
be valid, although the read transaction has actually failed and the data
content is indetermined. When using this setting, the programmer should
also catch SIGBUS to correctly deal with data returned by the read oper-
ation although the transfer failed.

= 1 Restart the machine instruction which caused the precise trap (default).
This usually results in the VMEbus accessing the address which caused
the bus error over and over again, i.e. the error recovery function does not
stop sending SIGBUS signals to the process.

vme_event_warn defines how to react on ACFAIL, SYSFAIL, and ABORT:

= 0 Do not print any warning (default).

= 1 Print a warning, if the corresponding event is not handled.
Solaris VMEbus Driver Page 21

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Basic Test of the Driver Installation and Configuration Guide

 used
e sys-

d at
s

d

d.
ci-

m-
3.2 Basic Test of the Driver

After successful installation the package’s program examples can be
to access a slave board on the VMEbus. Ensure to have rebooted th
tem after package installation.

Sample situation for the screen output shown in this section:

The following examples assume that there is a memory boar
VMEbus address 6000.000016, accessible in the A32 addres
range, which accepts 32-bit single transfers.

Filling memory
with 0

1. Use the vmedma driver to fill the first megabyte of the memory boar
with 0.

Write access 2. Use the vmeplus driver to write some data to the memory boar
vme_dump takes data from standard input and writes it to the spe
fied VMEbus address until CTRL-D is entered.

Read access 3. Use the vmeplus driver to read the data we just wrote to the me
ory board. In the example below, 2016 (= 3210) Byte are read.

Read and store in
file

4. Use the vmedma driver to read 1 megabyte and store it in a file.

cd /opt/FRCvme/examples
vmecp -t -a 60000000 -s 100000 /dev/zero /dev/vmedma32d32
1048576 bytes in 0.08 real seconds = 12.31 MB/sec

vme_dump -w /dev/vme32d32 60000000
This is a test
^D

vme_dump -r /dev/vme32d32 60000000 20
This is a test

vmecp -t -a 60000000 -s 100000 /dev/vmedma32d32 /usr/tmp/data
1048576 bytes in 0.16 real seconds = 6.39 MB/sec
cat /usr/tmp/data
This is a test
rm /usr/tmp/data
Page 22 Solaris VMEbus Driver

Installation and Configuration Guide Troubleshooting

bus
tici-

esses

y in-
e in-
king

lling
tem
 true

boot

t),

rd’s
rd’s

-

s not
ister.
e is
essed
Troubleshooting

If a VMEbus bus error occurs, vme_dump will terminate with a core
dump, vmecp with an I/O error. If this happens, make sure that

• the respective CPU board is present and accessible at the VME
address specified, and that it does not conflict with other bus par
pants.

• the respective CPU board accepts extended supervisory data acc
(AM code 0D16).

For a detailed troubleshooting discussion, see next section.

3.3 Troubleshooting

If the installation aborts, the package is considered to be only partiall
stalled. An appropriate message will be displayed before ending th
stallation. Have a second try on the package installation after chec
the following:

Older version
already installed

Check whether an older version has not been uninstalled before insta
the new version of the Solaris VMEbus Driver. Also note that the sys
has to be rebooted after installing or uninstalling a nexus driver as is
for the Solaris VMEbus Driver package.

Irregular boot
termination

If the boot process terminates before the VMEbus driver is loaded (
with the option -v to see every boot message), this may be caused by

• some hardware defect: see respective manual to locate the defec

• incorrect OpenBoot boot settings: consult the respective CPU boa
manual to figure out the default setting and use the CPU boa
default setting for a retry,

• or the standard Solaris mcp driver trying to access the VMEbus hard
ware: Solaris 2.x includes a driver of the vme class (see /ker-
nel/drv/mcp). Unfortunately, mcp assumes that it found an mcp
board if accessing certain VMEbus addresses is possible and doe
double check this assumption, e.g by accessing a control reg
This can cause the VMEbus system to hang or to panic if ther
accidentally another board installed at one of the addresses acc
by mcp. To avoid this, the mcp driver should be removed.
Solaris VMEbus Driver Page 23

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Troubleshooting Installation and Configuration Guide

 rack
heck
.g.
t-1

E-

 own

ra-
this

 leaf
 dy-
ers
t
ting
Hang up after
VMEbus driver
message

If the system hangs without any further messages after the VMEbus driv-
er message is displayed, the system is trying to access the VMEbus but
the access is not successful.

– system contr. Check whether there is no system controller (arbiter) in the VMEbus
or the CPU board’s system controller function has been disabled. C
the respective switch setting for the VMEbus slot-1 configuration (e
check the VMEbus slot-1 auto-configuration and the VMEbus slo
manual mode switch, if implemented on the CPU board). Ensure

• that there is a system controller present,

• that there is only one system controller in the VMEbus rack,

• and that it is plugged into slot 1 of the VMEbus rack.

– address ranges When there are several CPU boards installed in the rack,

• check the VMEbus addresses of all installed CPU boards. The VM
bus address ranges of the CPU boards must be non-overlapping.

• make sure that the master CPU board does not try to decode its
VMEbus addresses. For example, this happens if the slavewin
property is enabled (see section 5.1 “VME Nexus Driver Configu
tion” on page 99) and some device driver is configured to use
address range.

Missing drivers Unlike in former Solaris versions, no drivers – be it nexus or be it
drivers – will be loaded permanently by default. Instead, Solaris 2.x
namically loads every driver when it is needed. To check which driv
are loaded, use the modinfo command. Due to dynamic loading, i
might well be that no driver is loaded after a reboot. Only when boo
with the reconfigure option -r, any installed driver will be registered.

Note: Some VME leaf drivers may not be loaded on hardware that
lacks the corresponding hardware features. For example, the
vmedma and vmefdma drivers cannot be installed on S4 based
boards, since the S4 SBus-to-VME bridge has no DMA controller.
Page 24 Solaris VMEbus Driver

Installation and Configuration Guide Limitations

g on
ends
oard
ere-
 the

ard
call,
ct.

16.

rd’s

he
-
 to
 at
ted

ze is
ly
rag-
3.4 Limitations

The user interface of this software package stays the same regardless of
the type of the CPU board this package is installed on. However, the fol-
lowing limitations apply:

• A function call may be parameterized by values that are dependin
the type of CPU board used: for example, reading a register dep
on the register’s address which in general is specific to the CPU b
and the VMEbus interface chip being used on the CPU board. Th
fore, a header file is available for each interface chip containing
#define statements for each available register address.

• A function call does not necessarily have an effect: If the CPU bo
does not support a feature required to execute a given function
the function can be called but it will return without having any effe
For example, there are CPU boards

– providing only 1 master window, whereas others provide up to

– being unable to generate VMEbus interrupts.

For information on such limitations, see the Solaris VMEbus Driver
Release Notes of the release under consideration and the CPU boa
Technical Reference Manual.

• The following limitation results from the Sun 4m architecture: T
vmefdma and vmedvma drivers need kernel memory for their buff
ers. For Sun 4m architectures, the kernel memory is limited
100 MByte. However, not all of the kernel memory is available
run-time. The longer the system is up running, the more fragmen
the kernel memory becomes. Further more, the used memory si
limited by the IOMMU. The IOMMU address space is maximal
64 MByte, and just as the kernel memory it becomes the more f
mented the longer the system has been up running.
Solaris VMEbus Driver Page 25

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Limitations Installation and Configuration Guide
Page 26 Solaris VMEbus Driver

Application Programmer’s Guide

al
ivers

ded

li-

e code
4 Application Programmer’s Guide

Application programmers need to know the interfaces between the leaf
driver and the application. The Force Computers leaf drivers provide 2
such interfaces:

1. the standard UNIX system calls: For information on them, see the
man pages and the respective Solaris manual on system calls.

2. the VUI – the VME user application interface which is an addition
layer of abstraction between a user application and the device dr
for VME related functions.

Both interfaces are described in this section for every leaf driver inclu
in the Solaris VMEbus Driver package.

Using VUI
functions

To use VUI functions, the application must be linked with the VUI
brary libvui.a in /opt/FRCvme/usr/lib/ or /usr/lib/:
cc -o app app.c -L/opt/FRCvme/usr/lib -lvui

or:
cc -o app app.c -L/usr/lib -lvui

Example For examples on how to access the VMEbus see the sample sourc
in /opt/FRC/examples.
Solaris VMEbus Driver Page 27

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmeplus Application Programmer’s Guide

-
ion-
us
iver.

 /dev

ess
f the
a-

s),

-

gle

il-
sfer
xam-
sult

split
4.1 vmeplus

vmeplus replaces Sun’s vmemem driver. It includes all the code neces
sary to map and access VMEbus memory via programmed I/O. Addit
ally, it provides handlers for VMEbus interrupts which forward VMEb
interupts as signals to processes. It is a standard character device dr

Devices By default, the driver provides access to a number of device nodes in
which are named as follows:
/dev/vme<space><data>

Where <space> is

• 16 for accessing data in A16 address spaces,

• 24 for accessing data in A24 address spaces,

• 32 for accessing data in A32 address spaces,

• crcsr for accessing data in the CR/CSR address space, and

• pam1 or pam2 for accessing data in 1 of the 2 user-defined addr
spaces. The generated AM code depends on the configuration o
VME Nexus driver (see section 5.1 “VME Nexus Driver Configur
tion” on page 99).

<data> denotes the way the data is transferred on the VMEbus:

• d8 for 1-byte single cycles,

• d16 for 2-byte single cycles (including 1-byte cycles),

• d32 for 4-byte (lword) single cycles (including 1- and 2-byte cycle

• blt for BLT burst cycles (including all single cycles),

• mblt for MBLT (D64) burst cycles (including BLT burst and all sin
gle cycles), and

• te for 2-edge burst cycles (including all other burst and sin
cycles).

As can be seen, the <data> identifier denotes the maximum data capab
ity that will be generated on the VMEbus. However, the actual tran
depends on the load/store operation(s) done by the processor. For e
ple, accessing an 1-byte entity via the /dev/vme32d16 device will re
in 1-byte single cycles on the VMEbus, but a 4-byte access will be
into two 2-byte transfers on the VMEbus.

Note: The availability of these devices depends on the hardware
capabilities of the VMEbus bridge used. Refer to the Release Notes
for details.
Page 28 Solaris VMEbus Driver

Application Programmer’s Guide vmeplus

us

us
i-
eth-
 are

-
er-

-

Routines To access the driver and its devices the following routines are supported:

• UNIX system calls: open(), close(), read(), write(),
mmap(), munmap(), ioctl().

• VUI calls: vui_intr_ena(), ~_dis(), vui_rmw(),
vui_transfer_mode_set(), ~_get().

Configuration vmeplus overrides any default settings imposed by the VME nex
driver with one exception: VME:vme_diswp_flag (see section 3.1
“Configuration” on page 17).

The write posting property (off by default), which is related to VMEb
accesses done by vmeplus, is not controlled by selecting the appropr
ate minor node. It primarily depends on the hardware capabilities wh
er this property can be controlled at all and if so, to which state they
set. Refer to the corresponding section in the Release Notes for details.

To change the default behavior,

• modify the vmeplus:vme_master_default parameter in
/etc/system (see system(4)). The parameter’s value is a bit
mask containing bus property bits (see section 6 “VME Bus Prop
ties” on page 159).

• or use vui_transfer_mode_set() (see page 40). This over
rides the vmeplus:vme_master_default setting.

Example:

To enable write posting for VMEbus accesses by vmeplus, insert the
following line in /etc/system:

set vmeplus:vme_master_default=0x1000000

Configuration
file

/kernel/drv/vmeplus.conf is the vmeplus configuration file.
The file ends with a semicolon.

Sample configuration file:

interrupts=4,0x4c,5,0x50
reg=0x2d,0,0x10000,0x3d,0,0xff0000,

0x0d,0,0xff000000,0x6d,0,0x10000,
0x7d,0,0xff0000,0x4d,0,0xff000000,
0x2f,0,0x1000000,0x6f,0,0x1000000,
0x10,0,0xff000000,0x11,0,0xff000000,
0x50,0,0xff000000,0x51,0,0xff000000

name="vmeplus" class="vme";
Solaris VMEbus Driver Page 29

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmeplus Application Programmer’s Guide

e
riv-

-
the
oss
pec-

).

ossi-

bus
. Refer
for-

nd
type

per-

 may

les
evice
s must
– name Ensure that the name="vmeplus" statement is always included in th
configuration file as described in the sample configuration file. The d
er name in this case is always vmeplus.

– class Ensure that the class="vme" statement is always included in the con
figuration file as described in the sample configuration file. Thereby,
actual driver name for the VMEbus interface which may vary acr
hardware platforms is hidden from the leaf drivers and the parent is s
ified in terms of its interface type, instead: Via the class="vme" state-
ment, they relate themselves to the nexus driver of class vme.

– interrupts The interrupts property is a comma separated list of pairs:

• the first entry in a pair being the VMEbus IRQ level

• and the second being a VMEbus IRQ vector number.

The first interrupt property (IRQ#4 vector 0x4c) has the property num-
ber 0, the second pair of values has the property number 1 and so on.
This is important for the vui_intr_ena() and vui_intr_dis()
functions (see section 4.1.5 “vui_intr_ena(), vui_intr_dis()” on page 37

Sharing the same interrupt vector among several interrupt levels is p
ble.

– reg The reg property is a comma separated list of triples which define
type, the start address and end address of accessible VMEbus areas
to section 5.2.2 “VMEbus Mappings” on page 105 for details on the
mat of VMEbus reg properties.
The order of the reg-triples is unimportant. The vmeplus driver will
create device nodes in /dev based on the number of triples present, a
the names are defined based on the information found in the bus
fields.
The device names generally do not reflect whether non-privileged, su
visory, program or data accesses are generated on the VMEbus.

Absolute data
widths

As already mentioned, the data width generated by programmed I/O
alter, e.g. a 1-byte access may be done even when using the vmexxd32
device. This is especially the case when using the read()/write()
system calls.
By setting one or both of the properties absolute-width-read and
absolute-width-write into vmeplus.conf to 1, the driver
will alter the behavior of the read() and write() system calls re-
spectively. The driver will make sure that the size of VME single cyc
are made with the same data size as defined by the name of the d
used to perform the accesses. Both source and destination addresse
be properly aligned.
Page 30 Solaris VMEbus Driver

Application Programmer’s Guide vmeplus
Note: Setting the absolute-width-xxx properties significantly
degrades the data throughput of the read()/write() system
calls.

4.1.1 open(), close()

SYNTAX #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(

const char *path, /* path to device node */
int oflag);/* Open Flags*/

#include <unistd.h>
int close(int filds);/* File handle of opened device */

DESCRIPTION open()
obtains access to a VMEbus device and prepares it for use.

close()
closes a VMEbus file descriptor associated with a VMEbus device.

Both operations are similar to standard open(2) and close(2). For
further information, see the respective man pages.

RETURN
VALUES

On successful completion, open() returns the file descriptor. Other-
wise, -1 is returned and errno is set to indicate the error. close() al-
ways returns 0. See the open(2) and close(2) man pages.

ERRORS See also man pages of open(2) and close(2).

ENXIO
The minor node of the device is not supported. E.g. vmecrcsr16 is
not supported for FGA-5000 based CPU boards.
Solaris VMEbus Driver Page 31

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmeplus Application Programmer’s Guide
4.1.2 read(), write()

SYNTAX #include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
size_t read(

int filds, /* File handle of opened dev */
void *buf,/* buffer to receive data */
size_t nbyte);/* number of bytes to transfer */

#include <unistd.h>
size_t write(

int filds,/* File handle of opened dev */
const void *buf,/* buffer containing data */
size_t nbyte);/* number of bytes to transfer */

DESCRIPTION read()
copies a block of data from the VMEbus address space to a user pro-
cess buffer.

write()
copies a block of data from a user process buffer to the VMEbus ad-
dress space.

The read() and write() function calls implement reading of or writ-
ing to a previously opened VME device by using programmed I/O. For
higher performance use the DMA or fast DMA driver (/dev/vme-
dmaxxdyy or /dev/vmefdmaxxdyy) which provide a similar inter-
face.
The VMEbus address to be accessed is defined by the file pointer, which
in turn can be set by lseek() and llseek().

Both operations are similar to standard read(2) and write(2). For
further information, see the respective man pages.

RETURN
VALUES

On successful completion, the number of bytes transferred is returned.
Otherwise, -1 is returned and errno is set to indicate the error (see the
read(2) and write(2) man pages).

ERRORS See also the read(2) and write(2) man pages.

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

EINTR
The process has been interrupted by a signal while waiting for resourc-
es to become available.

EINVAL
Invalid argument.
Page 32 Solaris VMEbus Driver

Application Programmer’s Guide vmeplus
ENOTSUP
Action not supported.

EFAULT
The system call has been terminated due to a bus error on the VMEbus.

Note: The write() system call usually cannot detect whether a
write access has been terminated by a VME bus error, i.e. it will not
return an error code. At least in case of VME write posting being
disabled, error detection can be enabled by setting the absolute-
width-write property in the driver configuration file (refer to
“Absolute data widths” on page 30 for details).

EXAMPLE {
...
int vmedev;
int rc, i;
char buf[100];

if ((vmedev=open("/dev/vme32d32", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}
(void)printf("filling the write buffer\n");
for (i = 0; i < 100; i++)
{

buf[i]=i;
}
(void)printf("seeking to vme address 0x60000000\n");
if (lseek(vmedev, 0x60000000, SEEK_SET) == -1)
{

perror("lseek"); … /* ERROR */
}
(void)printf("writing the buffer to the VME memory\n");
rc = write (vmedev, buf, 100);
if (rc < 0)
{

perror("write"); … /* ERROR */
}
(void)printf("seeking to vme address 0x60000000\n");
if (lseek(vmedev, 0x60000000, SEEK_SET) == -1)
{

perror("lseek"); … /* ERROR */
}
rc = read (vmedev, buf, 100);
if (rc <= 0)
{

 perror("read"); … /* ERROR */
}
...
(void)close(vmedev);
...

}

Solaris VMEbus Driver Page 33

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmeplus Application Programmer’s Guide

 ad-

sup-

y the
ting,

when

page

e
een
4.1.3 mmap(), munmap()

SYNTAX #include <sys/types.h>
#include <sys/mman.h>
caddr_t mmap(

caddr_t addr,/* virtual address hint */
size_t len, /* # bytes to map in */
int prot, /* protection mode */
int flags,/* flags for page handling */
int fildes, /* VME dev file handle */
off_t off);/* VMEbus address */

#include <sys/types.h>
#include <sys/mman.h>
int munmap(

caddr_t addr,/* usr addr for mapped VME block */
size_t len);/* block size mapped in bytes */

DESCRIPTION mmap()
allows a VME address range to be mapped into an application’s
dress space.

munmap()
removes a previously set up mapping. Partial unmapping is not
ported.

Note: Even though the argument off is specified to be a signed
value a full 32-bit VMEbus address for A32 devices may be used. The
driver will interpret it as a 32-bit unsigned value.

Note: It is not possible for a process to set up a mapping whose
address range overlaps a range previously mapped for the same
device by this process.

The type of the mapped VMEbus address space is determined b
opened device node. Additional parameters, like enabling write pos
can be set via vui_transfer_mode_set() (see page 40).
Mapped VMEbus address ranges and their properties are inherited
a process forks.
Mappings must be set up as shared, i.e. the flags parameter has to be
set to MAP_SHARED.
The requested VMEbus address must be aligned to the hardware
boundary (see getpagesize(3C)).

RETURN
VALUES

mmap()
On successful completion, mmap() returns the start address within th
application’s address space to which the VME device has b
Page 34 Solaris VMEbus Driver

Application Programmer’s Guide vmeplus
mapped. Otherwise, it returns MAP_FAILED and sets errno to indi-
cate the error (see the man page for mmap(2)).

munmap()
On successful completion, munmap() returns 0. Otherwise, it returns
-1 and sets errno to indicate the error (see munmap(2)).

ERRORS See also the man page for mmap(2) and munmap(2).

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

EINTR
The process has been interrupted by a signal while waiting for resourc-
es to become available.

EINVAL
Invalid argument.

ENOTSUP
Action not supported.

EXAMPLE #include <stdio.h>
#include <fcntl.h>
#include <sys/mman.h>

void main()
{
 int vmedev, i;
 char *cptr, *v_vmeaddr;

 /* Open device */
 if ((vmedev = open("/dev/vme32d32", O_RDWR)) == -1) {

perror("/dev/vme32d32"); exit(1);
 }

 /* Map 240 MBytes of VME memory */
 v_vmeaddr = mmap(0, 240*1024*1024,PROT_READ|PROT_WRITE,
 MAP_SHARED, vmedev, 0x60000000);

 if (MAP_FAILED == v_vmeaddr) {
perror("mmap"); exit(1);

 }

 /* write zeros to VME using D8 (char) single cycles. */
 printf("Clearing 240 MB memory at VME 0x60000000."
 "Press CTRL-C to abort\n");
 for (cptr = v_vmeaddr; cptr < v_vmeaddr+240*1024*1024;

cptr++)
*cptr = 0;

 exit(0);
}

Solaris VMEbus Driver Page 35

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmeplus Application Programmer’s Guide

 the
r

 con-
4.1.4 ioctl()

SYNTAX #include <unistd.h>
#include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int ioctl(int fildes, int request, /* arg */ ...);

DESCRIPTION ioctl()
performs various device-specific control functions on devices.
request and an optional third argument with varying type are passed
to the file designated by fildes and are interpreted by the device
driver. For further information see man pages of ioctl(2).

Note: It is strongly recommended to use VUI functions instead of
ioctl().

VARIABLES fildes
file descriptor of an opened VME device

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_RMW
VME_TRANSFER_MODE_SET
VME_TRANSFER_MODE_GET
VME_INTR_ENA
VME_INTR_DIS

For a description of how these requests work see the respective VUI
function (vui_rmw(),…). For examples how to use ioctl(), see
the source code of the VUI functions.

arg
parameter that might be needed by the specified device to perform
requested function. The data type of arg depends on the particula
control request, but it is either an int or a pointer to a device-specific
data structure.

RETURN
VALUES

On successful completion, the value returned depends on the device
trol function, but it is always a non-negative integer. Otherwise, -1 is re-
turned and errno is set to indicate the error.

ERRORS See man pages of ioctl(2) and VUI functions
Page 36 Solaris VMEbus Driver

Application Programmer’s Guide vmeplus

,

4.1.5 vui_intr_ena(), vui_intr_dis()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_intr_ena (int dev, ioctl_irq_t *intr)
int vui_intr_dis (int dev, ioctl_irq_t *intr)

DESCRIPTION vui_intr_ena()
enables the VMEbus interrupt defined in the structure intr and for-
wards it as signal to the calling process.

vui_intr_dis()
disables the interrupt defined in the structure intr.

VARIABLES dev
file descriptor of an opened VME device

*intr
pointer to interrupt definition struct ioct_irq_t

The struct ioctl_irq_t is defined in vme.h:
struct ioctl_irq
{

int prop; /* …ena in , …dis in:
* property from vmeplus.conf file */

int sig; /* …ena in: signal, -1 means no signal */
int level; /* not relevant for these calls */
int vector;/* not relevant for these calls */

};
typedef struct ioctl_irq ioctl_irq_t;

prop
defines the index (zero based) of the interrupt property pair. Each in-
terrupt must be defined in the vmeplus driver’s configuration file
(kernel/drv/vmeplus.conf) by means of an interrupt property
which describes level and vector. Input for vui_intr_ena() and
…_dis() .

sig
sets the signal which shall be sent to the user application when the in-
terrupt occurs. Input for vui_intr_ena() .

Not all signals can be sent to an application. For a list of possible sig-
nals, see the proc_signal(9F) man page.

level
interrupt level, for these calls not relevant and therefore undefined.
Solaris VMEbus Driver Page 37

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmeplus Application Programmer’s Guide

r’s

n

-

vect
interrupt vector, for these calls not relevant and therefore undefined.

By default, there can be 7 interrupts at maximum defined in the vme-
plus.conf file. The interrupt property itself can be set to the use
needs.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also man pages of ioctl(2)

EACCES
In case of vui_intr_dis() the interrupt to be disabled has bee
enabled by another process.

EAGAIN
In case of vui_intr_ena() the interrupt is already enabled.

EINVAL
Invalid argument, e.g. because the sig parameter of the request struc
ture denotes a signal that cannot be used, or because the prop param-
eter does not reference an existing entry in vmeplus.conf.

ENOTSUP
Action not supported.

EXAMPLE int sighdl(int arg)
{

intr_count++;
}
...

void test_funct(void)
{

...
int vmedev;
ioctl_irq_t intr;
int dummy;

/* open some vmeplus device */
if ((vmedev=open("/dev/vme32d32", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}

intr.prop = 0;
intr.sig = SIGINT
intr_count = 0;
Page 38 Solaris VMEbus Driver

Application Programmer’s Guide vmeplus
/* set the signal handler */
sigset(SIGINT, sighdl);
/* activate the interrupt */
vui_intr_ena(vmedev, &intr);

/* receive ten interrupts */
while (intr_count < 10)
{

wait(&dummy);
printf(“Interrupt %d received\n”, intr_count);

}

vui_intr_dis(vmedev, &intr);
sigset(SIGINT, SIG_DLF);
(void)close(vmedev);
...

}

4.1.6 vui_rmw()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_rmw (

int dev,
vmeaddr_t vmeaddr,
ubyte_t *value);

DESCRIPTION vui_rmw()
performs a read-modify-write cycle (load and store unsigned byte)

VARIABLES dev
file descriptor of an opened VME device

vmeaddr
VME address for the transaction

value
value to be written to the VME address.

Note: The hardware implementation may limit the values that can
actually be written. Refer to the Release Notes for details on the
board under consideration.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also man pages of ioctl(2)
Solaris VMEbus Driver Page 39

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmeplus Application Programmer’s Guide

-

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

EFAULT
A VMEbus error occurred during the transaction.

EINVAL
Invalid argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE {
...
int vmedev;
int value;
if ((vmedev=open("/dev/vme32d32", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}
value=0xff;
vui_rmw(vmedev, (vmeaddr_t) 0x60000000, &value);
...
(void)close(vmedev);
...

}

4.1.7 vui_transfer_mode_set(), vui_transfer_mode_get()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_transfer_mode_set (int dev, bt_t tm)
int vui_transfer_mode_get (int dev, bt_t *tm)

DESCRIPTION vui_transfer_mode_set()
sets the transfer mode for all following master accesses done via
mmap(), read() / write(), or vui_rmw(). Only those bus
properties are relevant which are masked by VME_BT_TMASK.

vui_transfer_mode_set() allows to change the driver’s de
fault behavior. Alternatively, vmeplus:vme_master_default
can be set appropriately in /etc/system (see section 3.1 “Configu-
ration” on page 17).

vui_transfer_mode_get()
returns the actual transfer mode in tm.

VARIABLES Variables for vui_transfer_mode_set():
Page 40 Solaris VMEbus Driver

Application Programmer’s Guide vmeplus

erted
l-

s.

es.

ent
ithin
dev
file descriptor of an opened VME device

tm
flags defining the transfer mode(s) to enable or disable. Only the flags
masked by VME_BT_TMASK are relevant (see sys/vme_types.h
and section 6 “VME Bus Properties” on page 159): VME_BT_WP,
~_PF, ~_UNALIGN, ~_PRIAUTO, and ~_PROGAUTO.

To enable or disable the transfer mode(s) described by the ass
bit(s), the tm value can be the logical OR of one of the following va
ues:

VUI_SET Set this flag to enable the specified transfer mode

VUI_CLEAR Set this flag to disable the specified transfer mod

Variables for vui_transfer_mode_get():
dev

file descriptor of an opened VME device

*tm
pointer for the current bus properties. Within this pointer the curr
bus properties are returned. Possible bus properties are defined w
the header file vme_types.h. (see sys/vme_types.h and
section 6 “VME Bus Properties” on page 159).

Note: It is not possible to set the transfer modes for individual
device nodes or processes. At the moment when the transfer mode is
set up, it is valid for the whole driver instance. For the vmeplus
driver this means the following: if the transfer mode is set up for
example for /dev/vme32d32, it is valid for all /dev/vmexxdyy
devices and for all other processes using these devices. However,
existing mappings will not be affected.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also man pages of ioctl(2)

EINVAL
Invalid request or argument.

EXAMPLE {
...
int vmedev;
bt_t tm;

if ((vmedev=open("/dev/vme32d32", O_RDWR)) == -1)
Solaris VMEbus Driver Page 41

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmeplus Application Programmer’s Guide
{
 perror("open"); … /* ERROR */

}

/* disable write posting for all vmeplus devices */
vui_transfer_mode_set(vmedev, VUI_CLEAR | VME_BT_WP);
...
/* read out the actual transfer mode */
vui_transfer_mode_get(vmedev, &tm);

(void)close(vmedev);
...

}

Page 42 Solaris VMEbus Driver

Application Programmer’s Guide vmedma

s-

e

gle

ac-
4.2 vmedma

The vmedma driver utilizes the on-board DMAC (direct memory access
controller). It contains all the code necessary to initiate a transfer from
user space to VMEbus memory, and vice versa.

Devices By default, the driver provides access to a number of device nodes in
/dev which are named as follows:
/dev/vmedma<space><data>

Where <space> may be

• 16 for accessing data in A16 address spaces,

• 24 for accessing data in A24 address spaces,

• 32 for accessing data in A32 address spaces,

• crcsr for accessing data in the CR/CSR address space, and

<data> denotes the way the data is transferred and may be

• d8 for 1-byte single cycles,

• d16 for 2-byte single cycles (including 1-byte cycles),

• d32 for 4-byte (lword) single cycles (including 1- and 2-byte tran
fers),

• blt for BLT burst cycles (including all single cycles),

• mblt for MBLT (D64) burst cycles (including BLT burst and singl
cycles), and

• te for 2-edge burst cycles (including all other burst and sin
cycles).

Routines To access the driver the following routines are supported:

• UNIX system calls: open(), close(), read(), write(),
ioctl().

• VUI calls: vui_dma_malloc().

Configuration
file

/kernel/drv/vmedma.conf is the vmedma configuration file. It
contains a reg property which defines the vmedmaxxx device nodes
created in /dev. For a on the format of the reg properties refer to
section 5.2.2 “VMEbus Mappings” on page 105.
The reg property may be modified for accessing VMEbus address sp
es not present in the default configuration.
Solaris VMEbus Driver Page 43

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmedma Application Programmer’s Guide
4.2.1 open(), close()

SYNTAX #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(

const char *path,/* path to device node */
int oflag);/* Open Flags*/

#include <unistd.h>
int close(int filds);/* File handle of opened device */

DESCRIPTION open()
obtains access to the VMEbus device and prepares it for use.

close()
closes a VMEbus file descriptor associated with a VMEbus device.

Both operations are similar to standard open(2) and close(2). For
further information, see the respective man pages.

RETURN
VALUES

On successful completion, the file descriptor is returned. Otherwise, -1
is returned and errno is set to indicate the error (see the open(2) and
close(2) man pages).

ERRORS See also the open(2) and close(2) man pages

ENXIO
The minor node of the device is not supported. E.g. vmedma32te is
not supported for FGA5000-based CPU boards.

4.2.2 read(), write()

SYNTAX #include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
size_t read(

int filds, /* File handle of opened dev */
void *buf,/* buffer to receive data */
size_t nbyte);/* number of bytes to transfer */

#include <unistd.h>
size_t write(

int filds,/* File handle of opened dev */
const void *buf,/* buffer containing data */
size_t nbyte);/* number of bytes to transfer */

DESCRIPTION read()
copies a block of data from the VMEbus address space to a user pro-
cess buffer.
Page 44 Solaris VMEbus Driver

Application Programmer’s Guide vmedma

rt
write()
copies a block of data from a user process buffer to the VMEbus ad-
dress space.

The read() and write() function calls implement reading of or writ-
ing to a previously opened VME device. Via read and write system calls
the entire 32-bit VME space is accessible. VME D32, D16, BLT, MBLT,
and 2eVME accesses are supported (2eVME as of Solaris VMEbus Driv-
er release 2.1).
The value of the file pointer can be set using lseek() and llseek().
With the help of these 2 function calls, the starting VME address for read
or write access can be specified.

Both operations are similar to standard read(2) and write(2). For
further information, see the respective man pages.

Note: Some hardware needs properly aligned buffer and/or
VMEbus addresses (refer to the Release Notes if this is true for the
CPU board you use). To allocate the DMA buffer, it is recommended
to use the VUI function vui_dma_malloc() which allocates
properly aligned memory (see section 4.2.4 “vui_dma_malloc()” on
page 47). For VMEbus addresses, it is safe to use page-aligned sta
addresses and sizes.

RETURN
VALUES

On successful completion, the number of bytes transferred is returned.
Otherwise, -1 is returned and errno is set to indicate the error (see the
read(2) and write(2) man pages).

ERRORS See also the read(2) and write(2) man pages

EINVAL
Invalid request or argument.

EIO
An I/O error occurred during the transaction. The fault address might
also be displayed on the system console.

EXAMPLE { ...
int vmedev;
int rc, i;
char *buf;

if ((vmedev=open("/dev/vmedma32d32", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}

/* allocate a 64K buffer and fill it */
buf = (char*)vui_dma_malloc(vmedev, 0x10000);
if (buf == NULL)
Solaris VMEbus Driver Page 45

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmedma Application Programmer’s Guide
{
perror("vui_dma_malloc"); … /* ERROR */

}
for (i = 0; i < 0x10000; i++)
{

buf[i]=i;
}

/* seek to VMEbus address and write the buffer */
if (lseek(vmedev, 0x60000000, SEEK_SET) == -1)
{

perror("lseek"); … /* ERROR */
}
rc = write (vmedev, buf, 0x10000);
if (rc < 0)
{

perror("write"); … /* ERROR */
}

/* seek to VMEbus address and read into buffer */
if (lseek(vmedev, 0x60000000, SEEK_SET) == -1)
{

perror("lseek"); … /* ERROR */
}
rc = read (vmedev, buf, 0x10000);
if (rc <= 0)
{

perror("read"); … /* ERROR */
}
free(buf);
(void)close(vmedev);

}

4.2.3 ioctl()

SYNTAX #include <unistd.h>
#include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int ioctl(int fildes, int request, /* arg */ ...);

DESCRIPTION ioctl()
performs various device-specific control functions on devices. re-
quest and an optional third argument with varying type are passed to
the file designated by fildes and are interpreted by the device driv-
er. For further information see also the man pages of ioctl(2).

Note: It is strongly recommended to use VUI functions instead of
ioctl().
Page 46 Solaris VMEbus Driver

Application Programmer’s Guide vmedma

 the
r

 con-

s no
E

VARIABLES fildes
file descriptor of an opened VME DMA device

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_DMA_GET_STATUS
VME_DMA_INFO

For a description of how these requests work see the respective VUI
function (vui_dma_malloc(),…). For examples how to use
ioctl(), see the source code of the VUI functions.

arg
Parameter that might be needed by the specified device to perform
requested function. The data type of arg depends on the particula
control request, but it is either an int or a pointer to a device-specific
data structure.

RETURN
VALUES

On successful completion, the value returned depends on the device
trol function, but always is a non-negative integer. Otherwise, -1 is re-
turned and errno is set to indicate the error.

ERRORS See man page of ioctl(2) and VUI functions

4.2.4 vui_dma_malloc()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
void *vui_dma_malloc (int dev, size_t size)

DESCRIPTION vui_dma_malloc()
allocates a buffer to be used for vmedma DMA operations. It checks
the required alignment of the hardware and calls memalign() in-
stead of malloc(). See also the memalign(3C) man pages. Use
free(3C)to release the buffer.

VARIABLES dev
file descriptor of an opened VME DMA device

size
size of the buffer to allocate

RETURN
VALUES

On successful completion, the buffer address is returned. If there i
memory available or if the given file descriptor does not specify a VM
Solaris VMEbus Driver Page 47

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmedma Application Programmer’s Guide
dma device, vui_dma_malloc() returns NULL. For errno values,
see the memalign(3C) and ioctl(2) man pages.

ERRORS See also ioctl(2), memalign(3C), and free(3C) man pages

ENOTSUP
Action not supported.

EXAMPLE { ...
int vmedev;
int rc, i;
char *buf;

if ((vmedev=open("/dev/vmedma32d32", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}

/* allocate a 64K buffer */
buf = (char*)vui_dma_malloc(vmedev, 0x10000);
if (buf == NULL)
{

perror("vui_dma_malloc"); … /* ERROR */
}
for (i = 0; i < 0x10000; i++)
{

buf[i]=i;
}

/* seek toVMEbus address */
if (lseek(vmedev, 0x60000000, SEEK_SET) == -1)
{

perror("lseek"); … /* ERROR */
}

/* write the buffer */
rc = write (vmedev, buf, 0x10000);
if (rc < 0)
{

perror("write"); … /* ERROR */
}
if (lseek(vmedev, 0x60000000, SEEK_SET) == -1)
{

perror("lseek"); … /* ERROR */
}

/* .. and read it */
rc = read (vmedev, buf, 0x10000);
if (rc <= 0)
{

perror("read"); … /* ERROR */
}
free(buf);
(void)close(vmedev);

}

Page 48 Solaris VMEbus Driver

Application Programmer’s Guide vmefdma

for

rnel

 /dev

s-

e

gle
4.3 vmefdma

vmefdma (fast DMA) avoids some software overhead typically emerg-
ing between 2 DMA transfers.

The vmefdma driver does not lock memory. The user process has to al-
locate kernel memory via VUI functions and use this memory for
read() and write() calls. When re-using this memory for every re-
quest,

• the IOMMU has to be set up only once, instead of setting it up
every transfer,

• and the DMA buffer does not have to be locked because it is in ke
memory.

This saves a significant amount of time.

Note: Depending on the system architecture, Solaris might not give
the allocated memory back for normal use. Refer to the Release
Notes for further information on allocating shared and DMA
memory for the CPU board under consideration.

Devices By default, the driver provides access to a number of device nodes in
which are named as follows:
/dev/vmefdma<space><data>

Where <space> may be

• 16 for accessing data in A16 address spaces,

• 24 for accessing data in A24 address spaces,

• 32 for accessing data in A32 address spaces,

• crcsr for accessing data in the CR/CSR address space, and

<data> denotes the way the data is transferred and may be

• d8 for 1-byte single cycles,

• d16 for 2-byte single cycles (including 1-byte cycles),

• d32 for 4-byte (lword) single cycles (including 1- and 2-byte tran
fers),

• blt for BLT burst cycles (including all single cycles),

• mblt for MBLT (D64) burst cycles (including BLT burst and singl
cycles), and

• te for 2-edge burst cycles (including all other burst and sin
cycles).
Solaris VMEbus Driver Page 49

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmefdma Application Programmer’s Guide

ac-

Routines To access this driver the following routines are supported:

• UNIX System calls: open(), close(), read(), write(),
mmap(), munmap(), ioctl().

• VUI calls: vui_fdma_malloc(), ~_free().

Configuration
file

/kernel/drv/vmedma.conf is the vmedma configuration file. It
contains a reg property which defines the vmedmaxxx device nodes
created in /dev. For a on the format of the reg properties refer to
section 5.2.2 “VMEbus Mappings” on page 105.
The reg property may be modified for accessing VMEbus address sp
es not present in the default configuration.

4.3.1 open(), close()

SYNTAX #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(

const char *path,/* path to device node */
int oflag);/* Open Flags*/

#include <unistd.h>
int close(

int filds);/* File handle of opened device */

DESCRIPTION open()
obtains access to the VMEbus device and prepares it for use.

close()
closes a VMEbus file descriptor associated with a VMEbus device.

Both operations are similar to standard open(2) and close(2). For
further information see the respective man pages.

RETURN
VALUES

On successful completion, the file descriptor is returned. Otherwise,-1
is returned and errno is set to indicate the error (see the open(2) and
close(2) man pages).

ERRORS See also man pages of open(2) and close(2)

ENXIO
The minor node of the device is not supported. E.g. vmefdma32te is
not supported for FGA5000-based CPU boards.
Page 50 Solaris VMEbus Driver

Application Programmer’s Guide vmefdma
4.3.2 read(), write()

SYNTAX #include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
size_t read(

int filds, /* File handle of opened dev */
void *buf,/* I/O address */
size_t nbyte);/* no. of bytes to transfer */

#include <unistd.h>
size_t write(

int filds,/* File handle of opened dev */
const void *buf,/* I/O address */
size_t nbyte);/* no. of bytes to transfer */

DESCRIPTION read()
copies a block of data from the VMEbus address space to a user pro-
cess buffer.

write()
copies a block of data from a user process buffer to the VMEbus ad-
dress space.

The read() and write() function calls implement reading of or writ-
ing to a previously opened VME device. Via read and write system calls
the entire 32 bit VME space is accessible. VME D32 and D16 accesses
are supported.
The value of the file pointer can be set using lseek() and llseek().
With the help of these 2 function calls, the starting VME address for read
or write access can be specified.

Note: Before it is possible to read or write DMA memory via the
vmefdma driver, it is necessary to allocate an I/O buffer via
vui_fdma_malloc() (see page 55). Use the resulting ioaddr
returned by vui_fdma_malloc() as buf argument for read()
or write() accesses.

Both operations are similar to standard read(2) and write(2). For
further information, see the respective man pages.

RETURN
VALUES

On successful completion, the number of bytes transferred is returned.
Otherwise, -1 is returned and errno is set to indicate the error (see the
read(2) and write(2) man pages).
Solaris VMEbus Driver Page 51

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmefdma Application Programmer’s Guide
ERRORS See also the read(2) and write(2) man pages

ENXIO
The buf parameter does not reflect an I/O address as returned by
vui_fdma_malloc().

EINVAL
Invalid request or argument.

EIO
An I/O error occurred during the transaction.

EXAMPLE {
...
int vmedev;
int rc, i;
u_int *uvaddr = NULL;
u_int *cvaddr = NULL;
ioctl_map_t fdma;

if ((vmedev=open("/dev/vmefdma32d32", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}
/* initialize the fdma struct */
fdma.data_size = 100 * sizeof(int);
fdma.prot = PROT_READ|PROT_WRITE;

/* allocate some I/O memory */
if (NULL == (uvaddr = vui_fdma_malloc(vmedev, &fdma)))
{

 perror("vui_fdma_malloc"); … /* ERROR */
}
/* fill the buffer */
cvaddr = uvaddr:
for (i = 0: i < 100; i++)
{

*cvaddr= i:
cvaddr++;

}

/* position the file pointer */
lseek(vmedev, 0x60000000, SEEK_SET);
/* do the write() access */
rc = write (vmedev, (void *)fdma.ioaddr, * sizeof(int));

 if (rc < 0)
 {

perror("write"); … /* ERROR */
}

Page 52 Solaris VMEbus Driver

Application Programmer’s Guide vmefdma
/* Give the space free */
vui_fdma_free(vmedev, &fdma, uvaddr);
uvaddr = NULL;
close (vmedev);
vmedev = 0;
if ((vmedev=open("/dev/vmefdma32d32", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}
/* initialize the fdma struct */
fdma.data_size = 100 * sizeof(int);
fdma.prot = PROT_READ|PROT_WRITE;

/* allocate some I/O memory */
if (NULL == (uvaddr = vui_fdma_malloc(vmedev, &fdma)))
{

 perror("vui_fdma_malloc"); … /* ERROR */
}
/* position the file pointer */
lseek(vmedev, 0x60000000, SEEK_SET);
/* do the read() access */
rc = read (vmedev, (void *)fdma.ioaddr, 100 * sizeof(int)

);
if (rc <= 0)
{

perror("read"); … /* ERROR */
}
cvaddr = uvaddr:
for (i = 0; i < 100; i++)
{

if (*cvaddr != i)
{
 printf(“WARNING:Read value failed\n”);
}
cvaddr++;

}
vui_fdma_free(vmedev, &fdma, uvaddr);
uvaddr = NULL;
close (vmedev);
vmedev = 0;

}

4.3.3 mmap(), munmap()

SYNTAX #include <sys/types.h>
#include <sys/mman.h>
caddr_t mmap(

caddr_t addr,/* has to be 0 */
size_t len, /* block size to map in B */
int prot, /* protection mode */
int flags,/* flags for page handling */
int fildes, /* file handle opened VME dev */
off_t off);/* I/O address of DMA buffer */

#include <sys/types.h>
Solaris VMEbus Driver Page 53

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmefdma Application Programmer’s Guide

een

or

d to
#include <sys/mman.h>
int munmap(

caddr_t addr,/* usr addr for mapped VME block */
size_t len);/* block size mapped in bytes */

DESCRIPTION Both operations are similar to standard mmap(2) and munmap(2). For
further information, see the respective man pages.
The off identified the DMA buffer to be mapped and must be set to the
ioaddr element as returned in the ioctl_map structure of
vui_fdma_malloc().

Note: It is strongly recommended to use vui_fdma_malloc()
and ~_free() instead of ioctl() and mmap() or munmap() (see
page 55).

RETURN
VALUES

mmap()
On successful completion, mmap() returns the start address within the
application’s address space to which the VME device has b
mapped. Otherwise, it returns MAP_FAILED and sets errno to indi-
cate the error (see the man page for mmap(2)).

munmap()
On successful completion, munmap() returns 0. Otherwise, it returns
-1 and sets errno to indicate the error (see the man page f
munmap(2)).

ERRORS See also the mmap(2) and munmap(2) man pages

EFAULT
Offset, size, or alignment are erroneous.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

4.3.4 ioctl()

SYNTAX #include <unistd.h>
#include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int ioctl(int fildes, int request, /* arg */ ...);

DESCRIPTION ioctl()
performs various device-specific control functions on devices. re-
quest and an optional third argument with varying type are passe
Page 54 Solaris VMEbus Driver

Application Programmer’s Guide vmefdma

 the
r

 con-
the file designated by fildes and are interpreted by the device driv-
er. For further information see the man pages of ioctl(2).

Note: It is strongly recommended to use VUI functions instead of
ioctl().

VARIABLES dev
file descriptor of an opened VME device

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_FDMA_MAP
VME_FDMA_UNMAP

For a description of how these requests work see the respective VUI
function (vui_fdma_map(),…). For examples how to use
ioctl(), see the source code of the VUI functions.

arg
parameter that might be needed by the specified device to perform
requested function. The data type of arg depends on the particula
control request, but it is either an int or a pointer to a device-specific
data structure.

RETURN
VALUES

On successful completion, the value returned depends on the device
trol function, but always is a non-negative integer. Otherwise, -1 is re-
turned and errno is set to indicate the error.

ERRORS See man pages of ioctl(2) and VUI functions

4.3.5 vui_fdma_malloc(), vui_fdma_free()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_fdma_malloc (

ind dev,
ioctl_map_t *fdma)

int vui_fdma_free (
int dev,
ioctl_map_t *fdma,
caddr_t vaddr)

DESCRIPTION vui_fdma_malloc()
allocates and mmaps a buffer to be used for vmefdma operations.
Solaris VMEbus Driver Page 55

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmefdma Application Programmer’s Guide
vui_fdma_free()
destroys a DMA buffer (which was allocated and mapped with
vui_fdma_malloc()) and unmaps it from the address space of the
process.

VARIABLE
TYPES

The structure ioctl_map_t is defined in vme.h:
struct ioctl_map
{

uint_t data_size;/* length of area to be mapped */
vmeaddr_tvme_addr;/* not needed here */
caddr_t kvaddr;/* reserved */
ulong_t ioaddr;/* I/O address of buffer */
bt_t bt;/* zero */
int prot;/* Protection Mode */
uint_t flags;/* zero */

};
typedef struct ioctl_map ioctl_map_t;

data_size
length of area to be mapped

kvaddr
This element is reserved for internal use and should neither be modi-
fied nor interpreted in any kind.

ioaddr
returned I/O address, needed for read() and write() accesses

prot
protection mode (same as used for mmap(2)):

VARIABLES Variables for vui_fdma_malloc():
dev

file descriptor of an opened VME device

*fdma
pointer to mapping structure. All mapping information is returned in
this structure.

Variables for vui_fdma_free():
dev

file descriptor of an opened VME device

*fdma
pointer to mapping structure. All mapping information needed to free
the memory is saved within this structure.

PROT_READ Page can be read.

PROT_WRITE Page can be written.

PROT_NONE Page cannot be accessed.
Page 56 Solaris VMEbus Driver

Application Programmer’s Guide vmefdma
vaddr
Virtual address of the DMA buffer which has been returned by
vui_fdma_malloc()

RETURN
VALUES

vui_fdma_malloc()
On successful completion, vui_fdma_malloc() returns a virtual
address where the DMA buffer can be accessed. Otherwise, 0 is re-
turned and errno is set to indicate the error.

vui_fdma_free()
On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL is
returned and errno is set to indicate the error.

ERRORS See also man pages of ioctl(2) and mmap(2)

EINVAL
Request or argument is invalid.

ENOMEM
Not enough memory available for DMA buffer reservation.

EXAMPLE { ...
int vmedev;
int rc, i;
u_int *uvaddr = NULL;
u_int *cvaddr = NULL;
ioctl_map_t fdma;

if ((vmedev=open("/dev/vmefdma32d32", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
/* initialize the fdma struct */
bzero(&fdma, sizeof(fdma));
fdma.data_size = 0x2000;
fdma.prot = PROT_READ|PROT_WRITE;

/* allocate some I/O memory */
if (NULL == (uvaddr = vui_fdma_malloc(vmedev, &fdma)))
{

 perror("vui_fdma_malloc"); … /* ERROR */
}

/* fill the buffer */
cvaddr = uvaddr:
for (i = 0; i < 0x2000; i++)
{

*cvaddr= i:
cvaddr++;

}
/* position the file pointer (VMEbus address) */
lseek(vmedev, 0x60000000, SEEK_SET);

/* do the write() access */
Solaris VMEbus Driver Page 57

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmedvma Application Programmer’s Guide
rc = write (vmedev, (void *)fdma.ioaddr, 0x2000);
if (rc < 0)
{

perror("write"); … /* ERROR */
}

/* Remove the I/O buffer */
vui_fdma_free(vmedev, &fdma, uvaddr);
uvaddr = NULL;
close (vmedev);

}

4.4 vmedvma

The vmedvma driver allows a process to set up and access on-board
memory as VMEbus slave-memory. Accesses from a VMEbus master
are translated into local-bus addresses, which in turn are mapped to a
DVMA buffer in the on-board memory.
The on-board memory buffer has to be mapped permanently. Therefore,
it can not be allocated by a user process (process memory is paged on de-
mand), but has to be allocated within the kernel address space by the ker-
nel. A process can access the buffer by using the mmap(), read(), and
write() system calls.

Devices The driver provides access to the /dev/vmedvmaxx devices. The fol-
lowing devices are defined:
/dev/vmedvma24
/dev/vmedvma32
/dev/vmedvma2432

vmedvma24 provides access to the shared memory in A24 space,
vmedvma32 in A32 space and vmedvma2432 in both the A24 and the
A32 space.

Routines To access this driver the following routines are supported:

• UNIX system calls: open(), close(), mmap(), munmap(),
ioctl(), read(), write().

• VUI calls: vui_slave_map(), ~_unmap().

Note: Depending on the system architecture, Solaris might not give
the allocated memory back for normal use. Refer to the Release
Notes for further information on allocating shared and DMA
memory for the CPU board under consideration.
Page 58 Solaris VMEbus Driver

Application Programmer’s Guide vmedvma

Default behavior For vmedvma write posting is disabled per default. To change the default
behavior use the bus properties which set up the slave window (see
section 6 “VME Bus Properties” on page 159).
If vme_slave_diswp_flag is set in /etc/system, write posting
is always disabled, regardless of other flags or VUI function calls.

Configuration
file

/kernel/drv/vmedvma.conf is the vmedvma configuration file.
It does not contain any configuration options.

Caution Never change the vmedvma configuration file.

4.4.1 open(), close()

SYNTAX #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(

const char *path,/* path to device node */
int oflag);/* Open Flags*/

#include <unistd.h>
int close(int filds);/* File handle of opened device */

DESCRIPTION open()
obtains access to a VMEbus device and prepares it for use.

close()
closes a VMEbus file descriptor associated with a VMEbus device.

Both operations are similar to standard open(2) and close(2). For
further information, see the respective man pages.

RETURN
VALUES

On successful completion, the file descriptor is returned. Otherwise,-1
is returned and errno is set to indicate the error (see the open(2) and
close(2) man pages).

ERRORS See man pages of open(2) and close(2).
Solaris VMEbus Driver Page 59

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmedvma Application Programmer’s Guide
4.4.2 read(), write()

SYNTAX #include <sys/types.h>
#include <unistd.h>
size_t read(

int filds, /* File handle of opened dev */
void *buf,/* I/O address */
size_t nbyte);/* no. of bytes to transfer */

#include <unistd.h>
size_t write(

int filds,/* File handle of opened dev */
const void *buf,/* I/O address */
size_t nbyte);/* no. of bytes to transfer */

DESCRIPTION read()
copies a block of data from the local VME shared memory buffer to a
process buffer.

write()
copies a block of data from a process buffer to the local VME shared
memory buffer.

The read() and write() function calls implement reading of or writ-
ing to a shared memory buffer previously set up using the vmedvma
driver.
The value of the file pointer can be set using lseek() and llseek().
It must lie within the VMEbus address range to which a shared memory
buffer has been mapped (within the VME address space identified by the
referenced device node). An error is returned if there is no VME shared
memory mapped to the requested address.
These functions may be used for accessing a local shared memory buffer
by processes other than the one which set up the mapping.

RETURN
VALUES

On successful completion, the number of bytes transferred is returned.
This may be less than the requested amount if the end of the accessed
shared memory buffer is exceeded by the request.
Otherwise, -1 is returned and errno is set to indicate the error (see the
read(2) and write(2) man pages).

ERRORS See also the read(2) and write(2) man pages

EINVAL
Invalid request or argument.

ENXIO
The current setting of the file pointer does not reference a VMEbus ad-
dress to which a shared memory buffer is mapped to.
Page 60 Solaris VMEbus Driver

Application Programmer’s Guide vmedvma

hin
been
 de-
ory

r by
EXAMPLE read() and write() can be demonstrated using the sample programs
shmem and vme_dump which are located in the examples directory.

1. To start shmem, enter:

shmem -n

2. Enter the information you are prompted for, e.g. address space, VME-
bus address, size.

When done, the program reports a VMEbus address where the shared
memory has been mapped to and reports the syntax to be used for
starting vme_dump in the next step.

3. Start vme_dump as reported by shmem in the previous step. In this
second process vme_dump accesses the shared memory via read()
and write() calls to the buffer.

4.4.3 mmap(), munmap()

SYNTAX #include <sys/types.h>
#include <sys/mman.h>
caddr_t mmap(

caddr_t addr,/* has to be 0 */
size_t len, /* size of buffer */
int prot, /* protection mode */
int flags,/* flags for page handling */
int fildes, /* file handle opened VME dev */
off_t off);/* kernel virtual address of buffer */

#include <sys/types.h>
#include <sys/mman.h>
int munmap(

caddr_t addr,/* usr addr for mapped VME block */
size_t len);/* block size mapped in bytes */

DESCRIPTION mmap()
allows a previously allocated shared memory buffer to be mapped into
an application’s address space.

munmap()
destroys the mapping for the shared memory buffer.

The off parameter identifies a shared memory buffer. It must lie wit
the VMEbus address range to which a shared memory buffer has
mapped (within the VME address space identified by the referenced
vice node). An error is returned if there is no VME shared mem
mapped to the requested address.
This function may be used for accessing a local shared memory buffe
processes other than the one which set up the mapping.
Solaris VMEbus Driver Page 61

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmedvma Application Programmer’s Guide
Note: Memory can only be mapped as shared, so the flags
argument has to be set to MAP_SHARED.

COMPATIBILI
TY

The semantic of the off parameter has been changed with driver release
2.4. Applications which do not take the off parameter from the kvaddr
element of the ioctl_map structure returned by vui_smem_map()
may need to be modified.

RETURN
VALUES

mmap()
On successful completion, mmap() returns the address at which the
mapping was placed. Otherwise, it returns MAP_FAILED and sets
errno to indicate an error (see the mmap(2) man page).

munmap()
On successful completion, the munmap() returns 0. Otherwise, it re-
turns -1 and sets errno to indicate an error (see the munmap(2)
man page).

ERRORS See man pages of mmap(2) and munmap(2).
ENXIO

The off parameter does not reference a VMEbus address to which a
shared memory buffer is mapped to.

4.4.4 ioctl()

SYNTAX #include <unistd.h>
#include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int ioctl(int fildes, int request, /* arg */ ...);

DESCRIPTION ioctl()
performs various device-specific control functions on devices. re-
quest and an optional third argument with varying type are passed to
the file designated by fildes and are interpreted by the device driv-
er. For further information see ioctl(2) man pages.

Note: It is strongly recommended to use VUI functions instead of
ioctl().

VARIABLES dev
file descriptor of an opened VME device
Page 62 Solaris VMEbus Driver

Application Programmer’s Guide vmedvma

 the
r

 con-

 and

pro-

abil-
d by
request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_SLAVE_MAP
VME_SLAVE_UNMAP
VME_SLAVE_SET

For a description of how these requests work see the respective VUI
function (vui_slave_map(),…). For examples on how to use
ioctl(), see the source code of the VUI functions.

arg
parameter that might be needed by the specified device to perform
requested function. The data type of arg depends on the particula
control request, but it is either an int or a pointer to a device-specific
data structure.

RETURN
VALUES

On successful completion, the value returned depends on the device
trol function, but always is a non-negative integer. Otherwise, -1 is re-
turned and errno is set to indicate the error.

ERRORS See the ioctl(2) man pages and VUI functions.

4.4.5 vui_slave_map(), vui_slave_unmap()

SYNTAX #include <sys/types.h>
#include <sys/mman.h>
#include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
caddr_t vui_slave_map (

int dev, ioctl_map_t *dvma)

int vui_slave_unmap (
int dev, ioctl_map_t *dvma, caddr_t vaddr)

DESCRIPTION vui_slave_map()
sets up a shared memory buffer, makes it accessible from VME
optionally maps it into the process space.

vui_slave_unmap()
destroys the VMEbus slave window, detaches the buffer from the
cess address space and frees the buffer memory.

The maximum possible size of a shared memory buffer and the prob
ity to get a VMEbus address that reflects the requested one is affecte
several factors:

• the amount of physically present memory,
Solaris VMEbus Driver Page 63

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmedvma Application Programmer’s Guide

rease

ss

 that
f the

ati-

 in-
tually

er be

in
).
• the amount of contiguous kernel address space (which may dec
during system operation),

• and the amount of contiguous, properly aligned IOMMU addre
space (which may also decrease during system operation).

This makes predictions very hard, but as a rule of thumb one can say
the more physical memory is present and the shorter the run-time o
system, the larger the possible buffer will be.

All mappings and allocations done for a process will be freed autom
cally when the device is closed or the process ended.

VARIABLE
TYPES

The structure ioctl_map_t is defined in vme.h:
struct ioctl_map
{

uint_t data_size;/* map In: size of buffer */
vmeaddr_tvme_addr;/* map In/Out: VMEbus address */
caddr_t kvaddr;/* reserved */
ulong_t ioaddr;/* reserved */
bt_t bt;/* map In/Out: properties of buf. */
int prot;/* map In: protection mode */
uint_t flags;/* map In: flags how to set up buf. */
vmeaddr_tdc_vmeaddr;/* map Out: Decoded VMEbus address */
size_t dc_size;/* map Out: Decoded size */

};
typedef struct ioctl_map ioctl_map_t;

data_size
In: size of the shared memory buffer

vme_addr
In: VMEbus address for the shared memory buffer

Out: resulting VMEbus address of the shared memory buffer. The
put address is only a suggestion. The output address is the ac
used address.

Note: Depending on the flags argument, the actual VMEbus
address may differ from the requested one. If it differs, this
accomplishes for a VME interface hardware requiring alignments
for which the Solaris DMA mechanism is not designed.

kvaddr
ioaddr

These elements are reserved for internal use and should neith
modified nor interpreted in any kind.

bt
In: flag for the bus property. All available flags are defined
vme_types.h (see section 6 “VME Bus Properties” on page 159
Page 64 Solaris VMEbus Driver

Application Programmer’s Guide vmedvma

In
l-
They can be logically OR-ed. See the Release Notes for flags which
are relevant for the CPU board under consideration.

Out: flags which actually are used.

prot
In: The protection mode is the same as used by mmap(2):

flags
Flags that affect the way how the shared memory is set up:

dc_vmeaddr, dc_size
Out: When setting up the VME slave window needed to access the on-
board memory, it may be necessary to set up a larger window than the
requested one. The address range of the actually used window is re-

PROT_READ Buffer can be read.

PROT_WRITE Buffer can be written.

PROT_NONE Buffer can not be accessed.

SMEM_PADDR reserved for future extensions, currently unused.

SMEM_VADDR If this flag is set, the standard method of setting
up the shared memory buffer is used.
Due to hardware limitations, the VMEbus ad-
dress to which the shared memory is actually
mapped might differ from the requested one. Re-
fer to the Release Notes for information on ad-
dress offsets which are to be expected for the
hardware under consideration.
Currently this flag must be set. It may be com-
bined with the flags described below.

SMEM_FIXED If this flag is set, the VMEbus nexus driver sets
up the shared memory at exactly the requested
VMEbus address, provided that the requested
VMEbus address is aligned to page boundary.
The decoded VMEbus address range might be
larger than the shared memory address range.
Using this flag might fragment system resources
more than not using the flag.
See the Release Notes whether this flag is sup-
ported for the CPU board under consideration.

SMEM_DONTMAP Set up the shared memory and map it to VME,
but don’t map it to the process address space.
this case, the only way to access the buffer loca
ly is to use the read() and write() interface.
Solaris VMEbus Driver Page 65

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmedvma Application Programmer’s Guide
ported by dc_vmeadd and dc_size. The VMEbus interface chip
responds to all master accesses within this range, so make sure that it
does not conflict with other bus participants.

COMPATIBILI
TY

The semantic of the kvaddr and ioaddr elements has been changed
with driver version 2.4. Applications that use these values for any oth-
er purposes or modify these values may need to be changed.

VARIABLES Variables for vui_slave_map():
dev

file descriptor of an opened VME device

*dvma
pointer to mapping structure

Variables for vui_slave_unmap():
dev

file descriptor of an opened VME device

*dvma
pointer to mapping structure

vaddr
Virtual address of the slave memory buffer which has been returned by
vui_slave_map(). This parameter is ignored if the request flag
SMEM_DONTMAP is set.

RETURN
VALUES

vui_slave_map()
This function returns 0 if an error occurred and errno is set. On suc-
cess, it returns a virtual address where the slave memory can be access-
ed.

If the request flag SMEM_DONTMAP has been set,
vui_slave_map() returns SMEM_MAPPED to indicate success.

vui_slave_unmap()
On successful completion, VUI_OK is returned. Otherwise,
VUI_FAIL is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

EFAULT
Offset, size, or alignment are erroneous.

EINVAL
Invalid request or argument.
Page 66 Solaris VMEbus Driver

Application Programmer’s Guide vmedvma
ENOMEM
Possible causes:

– The composite size of dvma.data_size plus the lengths of all
previous mappings via mmap() exceeds RLIMIT_VMEM (see the
man pages of getrlimit(2)).

– Not enough I/O memory available for the mapping.

ENOTSUP
Action not supported.

EXAMPLE {
ioctl_map_t dvma;
int fd;
char *bufp;
int i;
if (-1 == (fd = open("/dev/vmedvma24", O_RDWR)))
{

perror("open"); … /* ERROR */
}
/* allocate and map 1 MB, give VMEbus address 0 as hint.
 * enable write posting. */
dvma.data_size = 0x100000;
dvma.vme_addr = 0x0;
dvma.flags = SMEM_VADDR;
dvma.bt = VME_BT_WP;
bufp = (char*)vui_slave_map(fd, &dvma);

if (bufp == NULL)
{

perror("vui_slave_map"); … /* ERROR */
}

/* report values */
printf("--> Slave window at VME 0x%x\n",

(u_int)dvma.vme_addr);
printf("--> Decoded slave range: 0x%x + 0x%x\n",

(u_int)dvma.dc_vmeaddr,
(u_int)dvma.dc_size);

...
wait for someone to write data to the buffer
...

/* print some bytes */
for (i = 0; i < 16; i++)

printf("%02x ", (int)(bufp[i])&0xff);
printf(“\n”);
/* destroy the slave memory and unmap it */
printf("-> Unmapping buffer...");
vui_slave_unmap(fd, &dvma, bufp);
...
close(fd);

}

Solaris VMEbus Driver Page 67

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide

of
4.5 vmectl

The vmectl driver provides various control and debug options. It also
supports mailboxes and hardware signals like abort, sysfail or ac-
fail. Furthermore, it can be used to obtain information about the CPU
board and the VME interface chip used.

Devices The driver provides access to the /dev/vmectl device.

Routines To access this driver the following routines are supported:

• UNIX System calls: open(), close(), ioctl().

• VUI calls:
vui_abort_wait(), ~_signal(),
vui_acfail_wait(), ~_signal(),
vui_arb_mode_set(), ~_get(),
vui_board(),
vui_bus_rel_mode_set(), ~_get(),
vui_bus_req_level_set(), ~_get(),
vui_bus_req_mode_set(), ~_get(),
vui_interface(),
vme_intr_generate(),
vui_mbox_info(), ~_set(), ~_remove(), ~_wait(),
vui_reg_base_set(), ~_get(),
vui_reg_read(), ~_write(),
vui_reset(),
vui_sysfail_assert, ~_deassert,
vui_(n)sysfail_wait(), ~_signal().

Configuration
file

/kernel/drv/vmectl.conf is the vmectl configuration file. It
contains one configuration option which controls the behavior
vui_acfail_wait(), ~_signal(), vui_sysfail_wait(),
~_signal(), vui_nsysfail_wait(), and ~_signal(). For
further information refer to the respective comment in vmectl.conf.

4.5.1 open(), close()

SYNTAX #include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(

const char *path,/* path to device node */
int oflag);/* Open Flags*/

#include <unistd.h>
int close(int filds);/* File handle of opened device */
Page 68 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
DESCRIPTION open()
obtains access to a VMEbus device and prepares it for use.

close()
closes a VMEbus file descriptor associated with a VMEbus device.

Both operations are similar to standard open(2) and close(2). For
further information, see the respective man pages.

RETURN
VALUES

On successful completion, the file descriptor is returned. Otherwise, -1
is returned and errno is set to indicate the error (see the open(2) and
close(2) man pages).

ERRORS See the open(2) and close(2) man pages

4.5.2 ioctl()

SYNTAX #include <unistd.h>
#include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int ioctl(int fildes, int request, /* arg */ ...);

DESCRIPTION ioctl()
performs various device-specific control functions on devices. re-
quest and an optional third argument with varying type are passed to
the file designated by fildes and are interpreted by the device driv-
er. For further information see the ioctl(2) man pages.

Note: It is strongly recommended to use VUI functions instead of
ioctl().

VARIABLES dev
file descriptor of an opened VME device

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_REG_READ
VME_REG_WRITE
VME_REG_BASE_SET
VME_REG_BASE_GET
VME_ARB_MODE_SET
VME_ARB_MODE_GET
VME_BRL_SET
VME_BRL_GET
VME_BRM_SET
Solaris VMEbus Driver Page 69

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide

 the
r

 con-

 the
VME_BRM_GET
VME_BREL_SET
VME_BREL_GET
VME_INTR_GENERATE
VME_MBOX_SET
VME_MBOX_GET
VME_MBOX_ENABLE
VME_MBOX_DISABLE
VME_MBOX_WAIT
VME_BOARD
VME_INTERFACE
VME_ABORT_INTR
VME_ACFAIL_INTR
VME_SYSFAIL_INTR
VME_RESET

For a description of how these requests work see the respective VUI
function (vui_reg_read(),…). For examples how to use io-
ctl(), see the source code of the VUI functions.

arg
parameter that might be needed by the specified device to perform
requested function. The data type of arg depends on the particula
control request, but it is either an int or a pointer to a device-specific
data structure.

RETURN
VALUES

On successful completion, the value returned depends on the device
trol function, but always is a non-negative integer. Otherwise, -1 is re-
turned and errno is set to indicate the error.

ERRORS See the ioctl(2) man pages

4.5.3 vui_abort_signal(), vui_abort_wait()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_abort_signal (int dev, int signal)
int vui_abort_wait (int dev)

DESCRIPTION vui_abort_signal()
sets the signal which shall be sent to the user application when
front-panel abort key is triggered.

vui_abort_wait()
waits for the abort key to be triggered.

VARIABLES Variables for vui_abort_signal():
dev

file descriptor of an opened VME device
Page 70 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
signal
signal to be sent to the user application when the front-panel abort key
is triggered. If set back to 0, sending the signal is stopped.

Variables for vui_abort_wait():
dev

file descriptor of an opened VME device

Note: Not all signals can be sent to an application. For a list of
possible signals, see the proc_signal(9F) man pages.

RETURN
VALUES

On successful completion, VUI_OK is returned by both functions. Other-
wise, VUI_FAIL is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

ECANCELED
A timeout occurred.

EINTR
The process has been interrupted by a signal while waiting.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE 1 {
int vmedev;
...
if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
/* wait for the ABORT switch to be triggered */
vui_abort_wait (vmedev);
...
(void)close(vmedev);
...

}

Solaris VMEbus Driver Page 71

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
EXAMPLE 2 {
int vmedev;
...
if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
...
/* prepare a signal to be sent when the ABORT switch is

triggered */
sigset (SIGINT, aborthdl);
vui_abort_signal(vmedev, SIGINT);
...
vui_abort_signal(vmedev, 0);
(void)close(vmedev);
...

}

4.5.4 vui_acfail_signal(), vui_acfail_wait()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_acfail_wait (int dev)
int vui_acfail_signal (int dev, int signal)

DESCRIPTION vui_acfail_wait()
waits for the VME ACFAIL* to be asserted.

vui_acfail_signal()
sets the signal which shall be sent to the user application when VME
ACFAIL* is asserted.

VARIABLES Variables for vui_acfail_wait():
dev

file descriptor of an opened VME device

Variables for vui_acfail_signal():
dev

file descriptor of an opened VME device

signal
signal to be sent to the user application when VME ACFAIL* is as-
serted. By default the vmectl driver is configured to detect only tran-
sitions of the ACFAIL line from high to low, but not the current state of
the ACFAIL line. This behavior can be changed by modifying the driv-
er configuration file. For further information refer to the respective
comment in vmectl.conf.

If set back to 0, sending the signal is stopped.
Page 72 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
Note: Not all signals can be sent to an application. For a list of
possible signals, see the proc_signal(9F) man page.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because anoth-
er process is using the ACFAIL functions.

ECANCELED
A timeout occurred.

EINTR
The process has been interrupted by a signal while waiting.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE 1 {
int vmedev;
if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}
/* wait for the ACFAIL to be triggered */
vui_acfail_wait (vmedev);
...
(void)close(vmedev);
...

}

EXAMPLE 2 {
int vmedev;
if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
...
/* prepare a signal to be sent when ACFAIL is triggered */
sigset(SIGINT, acfail_hdl);
vui_acfail_signal(vmedev, SIGINT);
...
vui_acfail_signal(vmedev, 0);
...
(void)close(vmedev);
...
Solaris VMEbus Driver Page 73

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
}

4.5.5 vui_arb_mode_set(), vui_arb_mode_get()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_arb_mode_set (int dev, int arb)
int vui_arb_mode_get (int dev, int *arb)

DESCRIPTION vui_arb_mode_set()
sets the arbitration mode of the local VMEbus arbiter.

vui_arb_mode_get()
returns the arbitration mode the local VMEbus arbiter is currently run-
ning in.

VARIABLE Variables for vui_arb_mode_set():
dev

file descriptor of an opened VME device

arb
can have the following values:

The values are defined in vme_types.h. The arbitration mode can
not be set or requested if the local CPU board is not the VMEbus sys-
tem controller (VMEbus slot 0).

Variables for vui_arb_mode_get():
dev

file descriptor of an opened VME device

*arb
pointer to the current arbitration mode. The current arbitration mode is
returned within this pointer. For possible arbitration modes see above.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, e.g. if CPU is
not arbiter, VUI_FAIL is returned and errno is set to indicate the error.

VME_ARB_SGL single level arbiter on level 3

VME_ARB_RR round robin arbiter

VME_ARB_PRI priority arbiter with level 3 being the highest pri-
ority level

VME_ARB_PRIRR priority round robin arbiter

VME_ARB_OFF the board is not system controller (slot-1 device)
Page 74 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
ERRORS See also ioctl(2) man pages

EINVAL
Invalid argument.

ENOTSUP
Action not supported.

EXAMPLE { ...
int vmedev;
int arb;

if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
vui_arb_mode_set(vmedev, VME_ARB_PRIRR);
vui_arb_mode_get(vmedev, &arb);
...
(void)close(vmedev);
...

}

4.5.6 vui_board()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_board(

int dev,
char *name,/* board name max. 32 char */
short *rel);/* release */

DESCRIPTION vui_board()
returns the CPU board’s name and the LCA revision.

VARIABLES dev
file descriptor of an opened VME device

*name
pointer to a buffer, the CPU board’s name is copied to

*rel
pointer to the revision number

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See ioctl(2) man pages
Solaris VMEbus Driver Page 75

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
EXAMPLE {
int fd;
int id;
char name[32];
...
if (-1 == (fd = open("/dev/vmectl", O_RDWR)))
{

perror("open"); … /* ERROR */
 … /* ERROR */}

if (-1 == vui_board(fd, name, &id))
{

perror("vui_board"); … /* ERROR */
}

printf("-> Board name: %s\n", name);
printf("-> Board rev.: %d\n", (int)id);

}

4.5.7 vui_bus_rel_mode_set(), vui_bus_rel_mode_get()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_bus_rel_mode_set (int dev, int brel)
int vui_bus_rel_mode_get (int dev, int *brel)

DESCRIPTION vui_bus_rel_mode_set()
sets the VMEbus release mode for future master accesses.

vui_bus_rel_mode_get()
returns the current release mode.

VARIABLES Variables for vui_bus_rel_mode_set():
dev

file descriptor of an opened VME device

brm
specifies the VMEbus release mode, defined in vme_types.h:

VME_BRL_ROR Release on request

VME_BRL_ROC Release on clear

VME_BRL_RAT Release after timeout

VME_BRL_RWD Release when done
Page 76 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
Variables for vui_bus_rel_mode_get():
dev

file descriptor of an opened VME device

*brm
pointer to the current VMEbus release mode. This pointer returns the
current release mode. For possible values of the release mode see
above.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EINVAL
Invalid argument.

ENOTSUP
Action not supported.

EXAMPLE {
...
int vmedev;
int brel;

if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
vui_bus_rel_mode_set(vmedev, VME_BRL_ROR);
vui_bus_rel_mode_get(vmedev, &brel);
printf("->bus release mode: %d\n", brel);
...
(void)close(vmedev);
...

}

4.5.8 vui_bus_req_level_set(), vui_bus_req_level_get()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_bus_req_level_set (int dev, int brl)
int vui_bus_req_level_get (int dev, int *brl)

DESCRIPTION vui_bus_req_level_set()
sets the bus request level at which all future master accesses will be
performed.

vui_bus_req_level_get()
returns the current bus request level.
Solaris VMEbus Driver Page 77

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
VARIABLE Variables for vui_bus_req_level_set():
dev

file descriptor of an opened VME device

brl
bus request level: 0 to 3

Variables for vui_bus_req_level_get():
dev

file descriptor of an opened VME device

*brl
pointer to bus request level. This pointer returns the current bus request
level. Possible values are 0 to 3.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE {
...
int vmedev;
int brl;

if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

 perror("open"); … /* ERROR */
}
vui_bus_req_level_set(vmedev, 2);
vui_bus_req_level_get(vmedev, &brl);
printf("->bus request level: %d\n", brl);
...
(void)close(vmedev);
...

}

Page 78 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
4.5.9 vui_bus_req_mode_set(), vui_bus_req_mode_get()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_bus_req_mode_set (int dev, int brm)
int vui_bus_req_mode_get (int dev, int *brm)

DESCRIPTION vui_bus_req_mode_set()
sets the VMEbus request mode for future master transfers.

vui_bus_req_mode_get()
returns the current VMEbus request mode.

VARIABLES Variables for vui_bus_req_mode_set():
dev

file descriptor of an opened VME device

brm
specifies the VMEbus request mode, defined in vme_types.h:

Variables for vui_bus_req_mode_get():
dev

file descriptor of an opened VME device

*brm
pointer to the VMEbus request mode. This pointer returns the current
bus request mode. For possible values see above.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

VME_BRQ_FAIR fair request mode

VME_BRQ_DEMAND demand request mode
Solaris VMEbus Driver Page 79

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
EXAMPLE {
...
int vmedev;
int brm;

if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
vui_bus_req_mode_set(vmedev, VME_BRQ_FAIR);
vui_bus_req_mode_get(vmedev, &brm);
printf("->bus request mode: %d\n", brm);
...
(void)close(vmedev);
...

}

4.5.10 vui_interface()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_interface(

char *name,/* name string, max. 32 char */
short *rev);/* LCA revision */

DESCRIPTION vui_interface()
returns the interface name and the LCA revision.

VARIABLES dev
file descriptor of an opened VME device

name
pointer to a buffer, the interface name is copied to

rev
pointer to the revision number

RETURN
VALUES

On successful completion, VUI_OK is returned by all functions. Other-
wise, VUI_FAIL is returned and errno is set to indicate the error.

ERRORS See ioctl(2) man pages

EXAMPLE {
int fd;
int id;
char name[32];

if ((fd=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}

Page 80 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
...
if (-1 == vui_interface(fd, name, &id))
{

perror("vui_interface"); … /* ERROR */
}

printf("-> Interface name: %s\n", name);
printf("-> Interface rev.: %d\n", (int)id);
...
close (fd);

}

4.5.11 vui_intr_generate()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_intr_generate (int dev, ioctl_irq_t *intr)

DESCRIPTION vui_intr_generate()
triggers VMEbus interrupts. The function waits at most 1 second (un-
interruptable) for the interrupt to be acknowledged, otherwise an error
is returned.

Note: The generation of interrupts is hardware dependent.
Therefore, refer to the Release Notes whether this feature is
supported on the CPU board under consideration.

VARIABLE
TYPES

The structure ioctl_irq_t is defined in vme.h:
struct ioctl_irq
{

int prop; /* not needed here*/
int sig; /* not needed here*/
int level; /* VMEbus interrupt level */
int vector; /* VMEbus interrupt vector */

};
typedef struct ioctl_irq ioctl_irq_t;

level
interrupt level to be triggered: 1 … 7

vect
interrupt vector to be triggered: 0…255

VARIABLES dev
file descriptor of an opened VME device

intr
points to interrupt definition structure.
Solaris VMEbus Driver Page 81

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EACCES
The /dev/vmectl device was not opened for write access.

EAGAIN
The interrupt could not be generated because another interrupt trig-
gered by the local CPU on this level is not acknowledged yet.

ECANCELED
The IACK cycle did not finish within one second.

EINVAL
Invalid request or argument.

EXAMPLE {
int vmedev;
ioctl_irq_t intr;
int retry;
int error = 1;

if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

 perror("open");
exit(1);

}
intr.level = 5;
intr.vect = 0x5c;

/* Attempt to send interrupt. Retry ten times.
*/
for (retry = 0; retry < 10; retry++)
{

if (vui_intr_generate(vmedev, &intr) == VUI_OK);
{

/* Success. Exit retry loop
 */
error = 0;
break;

}
if (errno == ECANCELED)
{

/* Timeout after interrupt was sent.Maybe
 * the interrupt handler is very busy. It
 * might also be a hardware failure.
* Exit retry loop.
*/
error = 0;
fprintf(stderr, "IACK timed out\n");
break;

}

Page 82 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
else if (errno != EAGAIN)
{

/* fatal error
*/
perror("vui_intr_generate");
break;

}

fprintf(stderr,
"Old IRQ still pending, retrying\n");

}

if (error)
{

fprintf(stderr, "Error sending interrupt\n");
exit(1);

}
(void)close(vmedev);

}

4.5.12 vui_mbox_info()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_mbox_info (int dev, ioctl_mbox_info_t *mbox)

DESCRIPTION vui_mbox_info()
returns information about the mailbox capabilities and the current allo-
cation status.

Mailboxes are resources in the VMEbus bridge which trigger a local
interrupt when being accessed from the VMEbus.

VARIABLE
TYPES

The structure ioctl_mbox_info_t is defined in vme.h:
struct ioctl_mbox_info
{

int nmbox; /* no. of mailboxes */
int nmbox_inuse;/* mailboxes in use */
bt_t mbox_bt;/* avail. bus prop. */
vmeaddr_tmbox_offset_def;/* address offset */
vmeaddr_tmbox_offset_mask;/* address mask */
uint_t mbox_access;/* access method(s) */

};
typedef struct ioctl_mbox_info ioctl_mbox_info_t;

nmbox
total number of available mailboxes.

nmbox_inuse
number of mailboxes in use.
Solaris VMEbus Driver Page 83

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide

 the

to
the
hat
ich
 the
 the

t

mbox_bt
VMEbus properties for the available mailboxes (see section 6 “VME
Bus Properties” on page 159).

mbox_offset_mask
A bit mask that denotes the address bits which are compared by
hardware for detecting a mailbox access.

mbox_offset_def
an offset from a VMEbus address which is aligned
mbox_offset_mask. The resulting address is the address where
mailbox is accessible. This offset usually results from the fact t
mailboxes are in fact registers in the VMEbus bridge hardware wh
are made accessible from VME. In this case, the mask results from
setting/alignment of the register access image and the offset from
mailbox register within the complete register set.

mbox_access
specifies the kind of access which triggers a mailbox interrupt:

VARIABLES dev
file descriptor of an opened VME device

mbox
points to mailbox definition structure ioctl_mbox_info_t

RETURN
VALUES

On successful completion, VUI_OK is returned and the ioctl_mbox_
structure is filled with the known values. Otherwise, VUI_FAIL is re-
turned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

ENOTSUP
Hardware does not support mailboxes.

4.5.13 vui_mbox_set(), vui_mbox_remove()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_mbox_set (int dev, ioctl_mbox_t *mbox);
int vui_mbox_remove (int dev, int mbox_num);

VME_MB_RD trigger by read access.

VME_MB_WR trigger by write access.

VME_MB_RDWR trigger by both read or write access.
Page 84 Solaris VMEbus Driver

Application Programmer’s Guide vmectl

ng a
 each
 wait

not
fully

ro-
e no

.

ail-

 re-

an
DESCRIPTION vui_mbox_set()
allocates a mailbox for use by the calling process. A mailbox may be
operated in 2 modes:

• In "buffered mode", the mailbox behaves like a semaphore counti
mailbox access counter. The access counter is increased upon
access (V operation), and decreased when a process issues a
operation (P operation).
A buffered mailbox can be in state "disabled", i.e. the counter is
increased by an access, or "enabled". After a mailbox has sucess
been initialized by vui_mbox_set(), it is disabled. It can be
enabled by calling vui_mbox_wait() or
vui_mbox_control().

• In "non-buffered" mode, the mailbox is enabled if and only if a p
cess is waiting for it. Intermediate accesses to the mailbox hav
effect.

vui_mbox_remove()
releases (destroys) a mailbox.

VARIABLE
TYPES

The mailbox request structure ioctl_mbox_t is defined in vme.h:
struct ioctl_mbox
{

int mbox_num;/* Out: Mailbox id */
vmeaddr_tmbox_addr;/* Out: VMEbus address */
bt_t mbox_vme_space;/* In/Out: VME properties */
vmeaddr_tmbox_vme_min;/* In: low mbox addr. */
vmeaddr_tmbox_vme_max;/* In: upper mbox addr. */
uint_t mbox_access;/* In/Out: mailbox modes */

};
typedef struct ioctl_mbox ioctl_mbox_t;

mbox_num
vui_mbox_set() sets this value to the ID of the allocated mailbox

mbox_addr
Gets set with the VMEbus address of the allocated mailbox.

vme_space
This bit set specifies the VMEbus bus properties of a requested m
box (see section 6 “VME Bus Properties” on page 159).

Upon successful return, vme_space contains the actual VME bus
properties of the allocated mailboxes. All property bits set in the
quest are guaranteed to be satisfied. vui_mbox_set() might set ad-
ditional properties if hardware requires it.

vui_mbox_set() returns an error if property bits are set which c
not be satisfied by hardware.
Solaris VMEbus Driver Page 85

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
mbox_vme_min, mbox_vme_max
Defines a lower and inclusive upper address boundary for a mailbox
request. vui_mbox_set() returns an error if it is not possible to allo-
cate a mailbox within this address range.

mbox_access
specifies further properties of the mailbox to be allocated:

Upon successful return, vui_mbox_set() returns the actual access
type(s) in mbox_access. If set, access types VME_MB_RD, ~WR and
~RDWR are guaranteed to remain valid, but they might get extended
(e.g. if read access was requested, a mailbox might be triggered by
read and write accesses). If a specified access mode cannot be granted,
an error is returned.

VARIABLES Variables for vui_mbox_set():
dev

file descriptor of an opened vmectl device

*mbox
points to mailbox definition structure.

Variables for vui_mbox_remove():
dev

file descriptor of an opened vmectl device

mbox_num
mailbox-ID which has been returned in the mailbox definition struc-
ture by vui_mbox_set()

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EAGAIN
At execution time the action cannot be done, e.g. because no resources
are available.

EINVAL
Invalid request or argument.

VME_MB_RD, or Mailbox is triggered upon reading, writing to its
address (or both) respectively.
Not setting these flags is valid (a default value
will be selected and returned).

VME_MB_WR, or

VME_MB_RDWR

VME_MB_BUFFER Indicates that the mailbox shall be requested in
buffered mode. If this flag is not set, the mail-
box is requested in non-buffered mode.
Page 86 Solaris VMEbus Driver

Application Programmer’s Guide vmectl

 en-
he
ENOTSUP
Action not supported.

EXAMPLE {
int fd;
ioctl_mbox_t mbox;
...
if (-1 == (fd = open("/dev/vmectl", O_RDWR)))
{

perror("open"); … /* ERROR */
}

mbox.mbox_vme_space=VME_BT_A16 | VME_BT_D8;
mbox.mbox_vme_min=0;
mbox.mbox_vme_max=0xffff;
mbox.mbox_access=VME_MB_BUFFER;

if (-1 == vui_mbox_set(fd, &mbox))
{

perror("vui_mbox_set"); … /* ERROR */
}
printf("--> Mailbox id: %d\n", mbox.mbox_num);
printf("--> Mailbox address: 0x%x\n",

(u_int)mbox.mbox_addr);
printf("--> Mailbox access: 0x%x\n", mbox.mbox_access);
...
close(mbox);

}

4.5.14 vui_mbox_wait()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_mbox_wait (int dev, int mboxnum)

DESCRIPTION vui_mbox_wait()
Waits for a mailbox being accessed. The exact behavior depends on
whether the mailbox has been initialized in buffered or non-buffered
mode (see “vui_mbox_set(), vui_mbox_remove()” on page 84).
If the mailbox is operated in buffered mode and it has not yet been
abled by vui_mbox_control(), it will automatically be enabled by t
vui_mbox_wait() call.

VARIABLES dev
file descriptor of an opened VME device

mboxnum
mailbox ID – set when returning from vui_mbox_set()

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.
Solaris VMEbus Driver Page 87

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide

n:
ERRORS See also ioctl(2) man pages

EINVAL
Invalid request or argument.

EAGAIN
Another process is already waiting at the specified mailbox. This is
currently not supported.

ENOSPC
The mailbox is used in buffered mode and an overflow of the mailbox
counter has occured. If this happens, the mailbox is automatically dis-
abled. Use the vui_mbox_control() function to reset its state.

4.5.15 vui_mbox_control()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_mbox_control(int dev, int mboxnum, int ctlop,

 caddr_t arg);

DESCRIPTION This function performs various control operations on a mailbox which
has been initialized by vui_mbox_set().

VARIABLES dev
file descriptor of an opened vmectl device

mboxnum
mailbox ID – set when returning from vui_mbox_set()

ctlop, arg
Defines the control operation and an argument to the control operatio

Table 4 Mailbox Control operations

ctlop arg Description

VUI_MBOX_ENA 0 Enables a mailbox. This has
no effect if the mailbox is
already enabled.

VUI_MBOX_RESET Resets the mailbox counter
to zero and enables the
mailbox.
Page 88 Solaris VMEbus Driver

Application Programmer’s Guide vmectl

 the
The control operations VUI_MBOX_ENA, VUI_MBOX_DISA and
VUI_MBOX_CNTGET are only valid on buffered mailboxes.
In case of a mailbox counter overflow detected by vui_mbox_wait(),
the counter can be reset by a VUI_MBOX_ENA/VUI_MBOX_RESET
control operation/argument.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EINVAL
The accessed mailbox has not been allocated, or it has not been allocat-
ed in buffered mode, or the ctlop/arg argument(s) is/are invalid.

4.5.16 vui_reg_base_set(), vui_reg_base_get()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_reg_base_set (int dev,

vmeaddr_t regbase,
bt_t mode)

int vui_reg_base_get (int dev,
vmeaddr_t *regbase,
bt_t *mode)

DESCRIPTION vui_reg_base_set()
enables access to the register set of the VMEbus interface chipset from
VME and sets the base address. Refer to the Release Notes for the re-
quired alignment and address space. Note

– that the address of the register slave window may also affect
addresses for mailboxes (e.g. FGA-5x00)

VUI_MBOX_DISA 0 Disables a buffered mail-
box. Further accesses will
not increase the mailbox
counter.

VUI_MBOX_CNTGET int *cntr Stores the current value of
the mailbox access counter
in *cntr. The counter is not
altered.

Table 4 Mailbox Control operations (cont.)

ctlop arg Description
Solaris VMEbus Driver Page 89

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide

win-
– and that, if mailboxes have been allocated, the register slave
dow may already be set.

vui_reg_base_get()
reads out the register base of the VMEbus.

VARIABLES Variables for vui_reg_base_set():
dev

file descriptor of an opened VME device

regbase
VME register base address

Variables for vui_reg_base_get():
dev

file descriptor of an opened VME device

*regbase
this pointer returns the current VME register base address

RETURN
VALUES

On successful completion, both functions return VUI_OK. Otherwise
VUI_FAIL is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EINVAL
Invalid request or argument.

ENOTSUP
Action not supported.

EXAMPLE {
...
int vmedev;
vmeaddr_t regbase;

if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
vui_reg_base_set(vmedev, 0xffe0);
vui_reg_base_get(vmedev, ®base);
printf("->register base address: 0x%lx\n", regbase);
...
(void)close(vmedev);
...

}

Page 90 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
4.5.17 vui_reg_read(), vui_reg_write()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
/* if fga5000 or fga5100 based CPU board then include: */
#include <sys/fga5000.h>
/* if s4-based CPU-board then include: */
#include <sys/s4.h>

int vui_reg_read (
int dev,
ulong_t vmereg,
ulong_t *regvalue);

int vui_reg_write (
int dev,
ulong_t vmereg,
ulong_t regvalue);

DESCRIPTION vui_reg_read()
allows reading a register of the VME interface which is specified by
vmereg. regvalue points to the address to be used for storing the
data read.

vui_reg_write()
allows writing a register of the VME interface which is specified by
vmereg. regvalue is the value to be written to the register.

VARIABLES Variables for vui_reg_read():
dev

file descriptor of an opened VME device

vmereg
specifies the register to be read. The registers for the VME interface
are defined in the corresponding include file (refer to the Release
Notes), e.g. in sys/fga5000.h. Only use the literals defined in the
include file, as they contain, among other information, the offset and
size of the registers present. It is not necessary to know the absolute
physical or virtual address of the register set.

When accessing register arrays, one should use the macro
VME_REGARR() defined in sys/vme_types.h, which calculates
the correct parameter for a certain index.

*regvalue
For a read access this variable contains the pointer to the address
where the register content shall be stored.
Solaris VMEbus Driver Page 91

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide

e of
sical

t

writ-

o re-
Variables for vui_reg_write():
dev

file descriptor of an opened VME device

vmereg
specifies the register to be written. The registers for the VME interface
are defined in the corresponding include file (see Release Notes), e.g.
in sys/fga5000.h. Only use the literals defined in the include file,
as they contain – among other information – the offset and the siz
the registers present. It is not necessary to know the absolute phy
or virtual address of the register set.

When accessing register arrays, one should use the VME_REGARR()
macro defined in sys/vme_types.h, which calculates the correc
parameter for a certain index.

regvalue
For a write access this variable contains the value which shall be
ten to the VME register.

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because n
sources are available.

ECANCELED
A timeout occurred.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE #include <sys/fga5000.h>
...
int vmedev;
u_long regvalue;
if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
vui_reg_write(vmedev, F50_REG_FMB_ADDR, 10);
vui_reg_read(vmedev, VME_REGARR(F50_REG_VME_RANGE, 6),

®value);
...
(void)close(vmedev);...

}

Page 92 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
4.5.18 vui_reset()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_reset(int dev)

DESCRIPTION vui_reset()
resets all VMEbus CPU boards except for the one the driver is running
on by triggering VME SYSRESET.

Note: See the Release Notes whether this function is supported or
not. If supported, the functionality of this call depends on the CPU
board’s switch setting. Enabling or disabling the SYSRESET output
and input signal is switch-selectable. Therefore, check the CPU
board’s switch setting to ensure proper operation.

VARIABLES dev
file descriptor of an opened VME device

RETURN
VALUES

On successful completion, VUI_OK is returned. Otherwise, VUI_FAIL
is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE { ...
int vmedev;

if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
vui_reset (vmedev);
...
(void)close(vmedev);
...

}

Solaris VMEbus Driver Page 93

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
4.5.19 vui_sysfail_assert(), vui_sysfail_deassert()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_sysfail_assert(int dev)
int vui_sysfail_deassert(int dev)

DESCRIPTION vui_sysfail_assert()
asserts sysfail line.

vui_sysfail_deassert()
clears sysfail line.

VARIABLES dev
file descriptor of an opened VME device

RETURN
VALUES

On successful completion, both functions return VUI_OK. Otherwise,
VUI_FAIL is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

ECANCELED
A timeout occurred.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE {
...
int vmedev;

if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}

vui_sysfail_assert (vmedev);
...
sleep(1);
vui_sysfail_deassert(vmedev);
...
(void)close(vmedev);
...

}

Page 94 Solaris VMEbus Driver

Application Programmer’s Guide vmectl

ME

as-
-
he
 by
to
4.5.20 vui_(n)sysfail_wait(), vui_(n)sysfail_signal()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_sysfail_wait (int dev)
int vui_sysfail_signal (int dev, int signal)
int vui_nsysfail_wait (int dev)
int vui_nsysfail_signal (int dev, int signal)

DESCRIPTION vui_sysfail_wait()/vui_nsysfail_wait()
waits for the VME SYSFAIL* to be

– asserted in case of vui_sysfail_wait()

– or negated in case of vui_nsysfail_wait().

vui_sysfail_signal()/vui_nsysfail_signal()
sets the signal which shall be sent to the user application when V
SYSFAIL* is

– asserted in case of vui_sysfail_signal()

– or negated in case of vui_nsysfail_signal().

VARIABLES Variables for vui_(n)sysfail_wait():
dev

file descriptor of an opened VME device

Variables for vui_(n)sysfail_signal():
dev

file descriptor of an opened VME device

signal
signal to be sent to the user application when VME SYSFAIL* is
serted. By default the vmectl driver is configured to detect only tran
sitions of the SYSFAIL line from high to low or vice versa, but not t
current state of the SYSFAIL line. This behavior can be changed
modifying the driver configuration file. For further information refer
the respective comment in vmectl.conf.

If set back to 0, sending the signal is stopped.

Note: Not all signals can be sent to an application. For a list of
possible signals, see the proc_signal(9F) man page.

RETURN
VALUES

On successful completion, both functions return VUI_OK. Otherwise
VUI_FAIL is returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages
Solaris VMEbus Driver Page 95

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
EAGAIN
At the time of execution the action cannot be done, e.g. because anoth-
er process is using the SYSFAIL functions.

EINVAL
Invalid request or argument.

ENOTSUP
Action not supported.

EXAMPLE 1 {
int vmedev;
if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}

vui_sysfail_wait (vmedev);
...
(void)close(vmedev);
...

}

EXAMPLE 2 {
int vmedev;
if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open"); … /* ERROR */
}
...
sigset(SIGINT, acfail_hdl);
vui_sysfail_signal(vmedev, SIGINT);
...
vui_sysfail_signal(vmedev, 0);
...
(void)close(vmedev);
...

}

4.5.21 vui_error_info()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_sysfail_wait(vme_errinfo_t *err_infop, u_int flags)

DESCRIPTION vui_error_info()
retrieves error counters from VME fault handling routines.

Note: Errors caused by DMA transactions are not covered by this
mechanism since they are handled by the DMA interface.
Page 96 Solaris VMEbus Driver

Application Programmer’s Guide vmectl
VARIABLE
TYPES

vme_errorinfo_t is defined in vme.h. It is used to count various
errors that have occurred during runtime.
typedef struct vme_errinfo
{

u_int vme_werrs;/* total #of write errors */
u_int vme_wp_errs;/* #of VME write posted errors */
u_int vme_rerrs;/* #of VME read errors */
u_int lbus_wp_errs;/* #of localbus posted write err. */
u_int iack_errs;/* #of IACK errors */
u_int res1, res2, res3;

} vme_errinfo_t;

vme_werrs
total number of posted and non-posted VMEbus write errors

vme_wp_errs
total number of VMEbus posted write errors

vme_rerrs
number of VMEbus read errors

lbus_wp_errs
number of posted local bus write errors that have not been reported to
the accessing VMEbus master by asserting BERR

iack_errs
number of failed interrupt acknowledge cycles initiated by the local
CPU acting as interrupt handler

VARIABLES dev
file descriptor of an opened VME device

*error_infop
pointer to a VME error count structure.

flags
is a bit set which may contain the following elements:

Note: It may be that error events are dropped when using the flag
VME_SLEEP. This is the case when an error occurs in the time
between issuing one of the above function calls and actually waiting
for an error event. To prevent such problems, the application

VME_SLEEP waits for the next error event increasing one of
the error counters before returning counters. The
wait state is interruptible by a signal. The data
stored to err_infop will be updated even if
the wait state was interrupted by a signal.

0 returns counters immediately.
Solaris VMEbus Driver Page 97

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

vmectl Application Programmer’s Guide
programmer should set a timeout which interrupts the wait state
from time to time and then check the error counters.

RETURN
VALUES

On successful completion VUI_OK is returned. Otherwise VUI_FAIL is
returned and errno is set to indicate the error.

ERRORS See also ioctl(2) man pages

EINTR
A wait state has been interrupted by a signal. The contents of the
counter values will be up to date

EINVAL
Invalid flags have been provided or err_infop was NULL.

EXAMPLE { ...
int vmedev;
vme_errinfo_t err_infop;
if ((vmedev=open("/dev/vmectl", O_RDWR)) == -1)
{

perror("open");
}

vui_error_info (vmedev, &err_infop, 0);

printf("->total number of write errors: %d\n",
err_infop.vme_werrs);

...
(void)close(vmedev);
...

}

Page 98 Solaris VMEbus Driver

Device Driver Developer’s Guide VME Nexus Driver Configuration

e
m
 is

de of

rm,

and
 de-
ck-

aris
 or

ows
en

ter-
able
5 Device Driver Developer’s Guide

Device driver developers need to know the interfaces between the nexus
driver and the leaf drivers. The Force Computers VMEbus nexus driver
provides 2 such interfaces:

1. the standard Solaris DDI/DDK: For information on DDI/DDK, see
the man pages and the Solaris manual on writing device drivers.

2. the VDI – the VME driver interface: It is an extension of th
DDI/DDK to support the VMEbus capabilities of CPU boards fro
Force Computers. It provides a standard interface. The VDI
described in this section.

Example For an example on how to use the VDI functions see the source co
the leaf drivers included in the Solaris VMEbus Driver package.

5.1 VME Nexus Driver Configuration

Configuration
file

/platform/arch/kernel/drv/VME.conf is the configuration
file of the VMEbus nexus driver. Depending on the hardware platfo
arch may be either sun4m or sun4u.
Within the configuration file values may be assigned to the master
slave window properties (see below). However, the default values are
fined to be suitable for standard use of the Solaris VMEbus Driver pa
age. Only when integrating drivers which are not included in the Sol
VMEbus Driver package (but, e.g., included in third party products)
when customizing of drivers is necessary, the values of the VME.conf
properties may have to be changed.

5.1.1 Master Window Properties

Under normal circumstances it is not necessary to define master wind
in VME.conf because master windows will be set up dynamically wh
a driver requests one.
However, this feature may help saving resources of the VMEbus in
face chip because only a limited amount of master windows is avail
(e.g., 16 on the FGA-5000).
Master windows which are defined in VME.conf are always 1 slot in
size, i.e. 256 MByte.
Solaris VMEbus Driver Page 99

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VME Nexus Driver Configuration Device Driver Developer’s Guide

h a
 AM

).

.

ped.

ther
ies”

 time
rds,
Example:

Assume that there are several VMEbus devices which occupy adja-
cent address ranges in the A32/D32 space. If so, it is possible to de-
fine 1 master range in VME.conf that covers all devices. When one
of the corresponding device drivers requests a master range, the
VMEbus nexus driver will notice that there already exists a range
which covers the requested one. The result is, that only 1 instead of
several master windows of the VMEbus hardware have to be re-
served.

The remaining parts of this section

• first describe the master window properties which can be set:

– properties for master windows (see “Master windows” below),

– properties to use programmable AM codes in conjunction wit
bus property specifying an address space (see “Programmable
codes” below),

• followed by a description of how to specify defaults (see page 102

Master windows The following properties control master window allocation:
vmewin=vmeaddr[,size,bus-properties]
vmewinX=vmeaddr[,size,bus-properties]

vmeaddr
specifies the VMEbus address to be covered by the master window

size
specifies the number of bytes of VMEbus address space to be map
If this parameter is not specified, 256MByte are allocated at vmead-
dr.

bus-properties
is a set of bits which specifies the VMEbus address space and o
properties of the master window (see section 6 “VME Bus Propert
on page 159).

There are CPU boards supporting more than 1 master window at a
(e.g., all CPU boards with FGA-5000 interface). For these CPU boa
use vmewin for the 1st and vmewinX for all following windows where
X is replaced by a digit.

Sample definition of 3 master windows:

VME address 1000000016, size 256 MB, A32 space,
privileged data access, max. data width is 32 bit.
#
vmewin=0x10000000, 0x10000000, 0x00040004

VME address 2000000016, size 256 MB, A32 space,
Page 100 Solaris VMEbus Driver

Device Driver Developer’s Guide VME Nexus Driver Configuration

i.e.

M

nto

e the
privileged data access, max. data width is 16 bit,
write posting is enabled.
#
vmewin1=0x20000000, 0x10000000, 0x01040002

VME address 0, size 4KB, A16 space,
privileged data access, max. data width is 32bit,
#
vmewin2=0x00000000, 0x1000, 0x00010004

Programmable
AM codes

There are VMEbus interface chips which offer programmable AM codes
(also called user-defined AM codes). The FGA-5100 for example, allows
to program 2 user-defined AM codes for VME master windows and to se-
lect one of them individually for each master window. This is supported
by the VMEbus nexus driver via the pamc property (pamc – program-
mable AM code). The 2 AM codes are fixed during system run-time,
there is no driver interface to set the AM codes dynamically.

– specifying • The 2 programmable AM codes are specified via the pamc property
in the configuration file of the VME nexus driver, VME.conf.

Note: When changing a value for a programmable AM code in
VME.conf, the vmeplus.conf has to be updated as well so that
the bus property for the corresponding reg property reflects the
new value in the VME.conf file.

pamc consists of 2 integer values defining the programmable A
codes 1 and 2. If no pamc property is defined in VME.conf, default
values are used: 1016 for AM code 1 and 1116 for AM code 2.

To define the 2 codes, the following line has to be inserted i
VME.conf:

pamc=value_of_AM_code_1, value_of_AM_code_2

Sample definition of AM code 1 = 0x15 and AM code 2 = 0x16:

pamc=0x15, 0x16

– set up window • To set up master windows using programmable AM codes, us
VME_BT_PAMC1 and VME_BT_PAMC2 bits via vdi_map_abs().

Note: The VME_BT_PAMC1 and VME_BT_PAMC2 bus properties do
not define the address space size, which means that a
VME_BT_PAMCx bus property literal must always be used in
combination with a bus property specifying an address space
(VME_BT_Axx).
Solaris VMEbus Driver Page 101

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VME Nexus Driver Configuration Device Driver Developer’s Guide

le AM

aps

s

ple

ally,
 or
rd-

the

in
s”

speci-

ngs

ple,

s

he

ter
– access devices • Memory devices to access the VMEbus using the programmab
codes are provided by the vmeplus driver:

/dev/vmepam1d16
/dev/vmepam2d16
/dev/vmepam1d32
/dev/vmemap2d32

Specifying defaults

When a device driver wants to access VMEbus locations, it usually m
them via ddi_map_regs(9e). This requires a reg property in its
configuration file driver.conf which specifies the correct addres
space. However, this might not be possible in all cases:

• Certain properties cannot be set via this interface: for exam
enabling or disabling write posting for a mapping.

• Others cannot be set on a per mapping basis but only glob
thereby affecting all mappings: for example generating privileged
non-privileged AM codes in case of FGA-5000 or S4 based ha
ware.

The default settings for such properties can be controlled by
VME:vme_master_defaults variable in /etc/system. It speci-
fies a set of miscellaneous bus property bits as defined
sys/vme_types.h (see section 6.3 “Miscellaneous Bus Propertie
on page 162 and the respective section of Release Notes for the hardware
dependencies). Note that only miscellaneous bus properties can be
fied here.
A device driver can override the VMEbus nexus driver’s default setti
by using vdi_transfer_set()/~_get() (see section 5.4.27
“vdi_transfer_set(), vdi_transfer_get()” on page 154). For an exam
see the source code of the vmeplus driver, which calls
vdi_transfer_set() at bootup to override the VMEbus nexu
driver’s default settings with its own defaults.

Example for FGA-5000 based hardware:

The following entry in /etc/system

– enables write posting for all drivers which do not override t
VMEbus nexus driver’s defaults via vdi_transfer_set()
(flag VME_BT_WP = 0100.000016)

– and provides for non-privileged access privilege for all mas
accesses (flag VME_BT_NPRV = 0800.000016).

set VME:vme_master_default = 0x09000000
Page 102 Solaris VMEbus Driver

Device Driver Developer’s Guide VME Nexus Driver Configuration

bus

PU
5.1.2 Slave Window Property

The slave window property is only relevant to be set correctly if a DDI
compliant leaf driver wants to set up DMA transfers from a VMEbus de-
vice. By setting this property, the VMEbus nexus driver can provide a
VMEbus address range where DMA capable VMEbus devices may ac-
cess the DMA buffer. Ensure that the specified address range fits to the
requirements of the VME DMA device(s).

Note: If you do not use drivers performing VME DMA via the
standard DDI interface, you should not define this property, because
valuable hardware resources are used up by this. For the drivers
included in the Solaris VMEbus Driver package there is no need to
define this property.

The following slave window property can be set if needed:
slavewin=vmeaddr, size, space

vmeaddr
defines the VMEbus start address of the slave window.

size
defines the size of the slave window in Bytes.

space
specifies the address space and the bus properties for the slave window
(see section 6 “VME Bus Properties” on page 159 or see the VME
nexus driver’s configuration file).

All 3 parameters must comply to the hardware requirements of the C
board. Refer to the Solaris VMEbus Driver Release Notes and the CPU
board’s Technical Reference Manual for further information.
Solaris VMEbus Driver Page 103

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Device Driver Properties Device Driver Developer’s Guide

ter

on

pts.
e is
sual-
vec-

ter-
 is

soft-
ens
bus
 for

oper

n
ice

, all

ssi-

5.2 Device Driver Properties

A device driver is usually configured via device properties. Device prop-
erties can be specfied by means of a driver configuration file (refer to
driver.conf(4)).
This chapter describes some extensions to standard properties which are
specific to the Force Computers VME nexus driver:

• interrupt specifications (see section 5.2.1 “Non-Vectored Interrup
Handling” on page 104), and

• register specifications (see section 5.2.2 “VMEbus Mappings”
page 105).

5.2.1 Non-Vectored Interrupter Handling

Solaris differentiates between vectored and non-vectored interru
SBus interrupts are non-vectored (i.e. the interrupt service routin
called based on the interrupt level) whereas VMEbus interrupts are u
ly vectored (interrupt service routine is called based on the obtained
tor).
The VME nexus provides the possibility to install a non-vectored in
rupt service routine (ISR) for a device driver as well. Such an ISR
called immediately after the VMEbus interrupt has been detected by
ware. For VMEbus bridges that perform software IACK, this happ
even before the IACK cycle has been initiated. Examples for VME
bridges which perform software IACK are S4 and FGA-5x00 whereas
example the Universe does not perform software IACK.
To set up such an interrupt service routine, the device driver devel
has to specify -1 as interrupt vector in the interrupts property of his
driver.conf file. The VME nexus driver then reserves the give
VMEbus interrupt level exclusively for this device driver, i.e. the dev
driver grabs this interrupt level. This has the following side effects:

• As long as a device driver has grabbed a VMEbus interrupt level
other requests for installing an ISR for this level are rejected.

• As long as at least 1 ISR for a specific level is installed, it is not po
ble to grab this interrupt level by installing a handler with “vector-
1”.

Note: The VME nexus driver does not attempt to perform an IACK
cycle itself for interrupt levels at which such a non-vectored ISR is
installed. However, hardware may require this. Therefore, the device
driver developer must use vdi_intr_acknowledge() to obtain
the interrupt vector (see section 5.4.12 “vdi_intr_acknowledge()” on
page 130), even if the vector is not used.
Page 104 Solaris VMEbus Driver

Device Driver Developer’s Guide Device Driver Properties

he

the
or 4
M

tion
rd-
nces

uch a
 a

ex-
the
.1
e
5 to
5.2.2 VMEbus Mappings

A driver that wants to map VMEbus space for accessing a device needs to
declare a reg property in its driver configuration file (see driv-
er.conf(4)). For VMEbus drivers, a reg property consists of an arbi-
trary number of triplets, each one describing

• the VMEbus address space and access width (the bus type),

• the start address within the selected bus type, and

• the size of the area to be mapped.

The format of the bus type is defined as follows:

• Bits 0..5 define the VMEbus AM code to be generated on t
VMEbus.

• Bits 6 and 7 are evaluated for single cycle AM codes and define
maximum data width generated on the VMEbus (1 byte, 2 bytes
bytes per cycle). These bits are ignored for all kinds of burst A
codes. The assignment is as shown in the following table:

Burst Cycles
with
Programmed I/O

When specifying an AM code that represents a VMEbus burst opera
(e.g. 0c16 for supervisory MBLT data transfers), it depends on the ha
ware whether burst cycles will be generated at all or what circumsta
must be satisfied for doing so. Refer to the Release Notes for details on
the hardware under consideration.
In any case, if no burst cycles are generated, accesses to VME via s
mapping will result in the corresponding single cycle AM code with
data width of D32 or smaller (for AM code 0c16 this is equivalent to a bus
type of 0d16 + 4016 = 4d16).

Programmable
AM codes

To make use of the programmable AM codes provided by the VME n
us, simply provide a bus type with the AM code field (bits 0..5) set to
value configured in the VME nexus’ configuration file (see section 5
“VME Nexus Driver Configuration” on page 99). Additionally, set th
data width bits as shown in table 5 “Data width encoding” on page 10
define the maximum access width on the VMEbus.

Table 5 Data width encoding

Bit 7 Bit 6 Hexadecimal Data width on VME

1 0 8016 D8

0 0 0016 D16 and smaller

0 1 4016 D32 and smaller

1 1 c016 reserved
Solaris VMEbus Driver Page 105

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Device Driver Properties Device Driver Developer’s Guide

us
Global properties Some VMEbus bridges do not support to set certain properties individu-
ally per mapping. Instead, they have to be declared globally, thus affect-
ing all VMEbus master transfers. In such a case the VME nexus driver
must be configured properly before a reg property which reflects such a
global setting becomes usable.

Example:

On FGA-5000 based boards (e.g. SPARC/CPU-5V), the selection wheth-
er to generate supervisory or non-privileged AM codes can only be made
globally. The default setting is to generate supervisory accesses. When
using a driver with a reg property denoting a non-privileged AM code,
set the following line in the system configuration file /etc/system:

set VME:vme_master_default=0x08000000

For details on this configuration option see section 5.1 “VME Nex
Driver Configuration” on page 99.
Page 106 Solaris VMEbus Driver

Device Driver Developer’s Guide Nexus Driver Fault Handling

l:

 to

nds
5.3 Nexus Driver Fault Handling

Read errors and non-posted write errors will result in a bus error signal to
be sent to the originating process whenever possible.

As of release 2.1 As of Solaris VMEbus Driver release 2.1, the originating process is
passed a SIGBUS signal and a signal information structure (siginfo)
describing the exact circumstances in case of a VMEbus bus error.
For the general mechanism of how to obtain such a siginfo structure
see the sigaction(2) man pages. With respect to the information
provided in the manual page the siginfo structure describing the error
is extended in the following way:

• The si_code element denotes the reason for the bus error signa

– si_code = VME_BERR_W in case of a VMEbus write error

– si_code = VME_BERR_R in case of a VMEbus read error

• The siginfo_t structure pointer should be casted to a pointer
vme_siginfo_t which is defined in sys/vme_types.h. It pro-
vides the following entries:

– vmeaddr_t si_vmeaddr

This is the VMEbus address where the fault occurred.

– bt_t si_busprop

This is a set of VME_BT_xxx macros describing the properties of
the VMEbus access (address space, data width, etc.).

For information related to read errors and error action flags, see
section 3.1 “Configuration” on page 17.
Since the way the VME nexus driver can handle VMEbus errors depe
on the hardware architecture, refer to the Release Notes for further infor-
mation on the CPU board under consideration.
Solaris VMEbus Driver Page 107

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
5.4 VDI Functions

The following table gives an overview of the functions provided by the
VME driver interface:

Table 6 Overview of VDI functions

Keywords Function(s)

Initialization vdi_attach() (p. 111)

Master mappings vdi_map(), ~_unmap() (p. 132)
vdi_map_abs(), ~_regspec() (p. 134)
vdi_reg_space() (p. 148)

Slave mappings vdi_smem_aloc(),~_free() (p. 148)
vdi_smem_map(), ~_unmap() (p. 149)
vdi_smem_enable() (p. 154)

DMA controller vdi_dma_start() (p. 115)
vdi_dmac_alloc_handle() (p. 120)

VMEbus

• arbiter vdi_arb_mode_set(), ~_get (p. 109)

• request mode vdi_breq_set(), ~_get (p. 113)

• request level vdi_brl_set(), ~_get (p. 114)

• release mode vdi_brel_set(), ~_get (p. 112)

• transfer mode vdi_transfer_set(), ~_get (p. 154)

• interrupter vdi_intr_acknowledge() (p. 130)
vdi_intr_generate() (p. 132)
vdi_virq_trigger, ~_ackwait () (p. 156)

VME events: SYSFAIL,
ACFAIL, ABORT, …

vdi_event_setup(), ~_release() (p. 122)

Register access vdi_reg_read(), ~_write() (p. 144)

Register access from
VMEbus

vdi_regslave_set(), ~_get (p. 145)

Mailboxes vdi_mbox_attach(), ~_detach() (p. 136)
vdi_mbox_enable(), ~_disable() (p. 141)
vdi_mbox_getinfo() (p. 141)
vdi_mbox_iblock_cookie(), vdi_mbox_hilevel() (p. 143)

Read-modify-write cycles vdi_rmw() (p. 147)

Hardware information vdi_info() (p. 125)

Error information vdi_error_info() (p. 121)
Page 108 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

d if
l
en

nel
at a

n-
DI
of

 be

arbi-
5.4.1 Calling VDI functions

VDI functions can be called by any device driver if the Force Computers
VME Nexus driver is loaded. Note, however, the following:

• A device driver cannot assume that the VME Nexus driver is loade
the driver is not a child of class vme. It is therefore not advised to cal
VDI functions by device drivers that are not direct or indirect childr
of the vme class.

• When a device driver module using VDI calls is loaded, the ker
must dereference the VDI function references. This requires th
device driver declares a global variable named _depends_on as
follows:

char _depends_on[]=”drv/VME”;

• To prevent loading a driver which uses VDI functions in an enviro
ment with a 3rd party VME nexus driver that does not provide V
functionality, the driver should evaluate the return value
vdi_attach() in it’s probe(9e) or attach(9e) routine (see
section 5.4.3 “vdi_attach” on page 111.).

5.4.2 vdi_arb_mode_set(), vdi_arb_mode_get()

SYNTAX #include <sys/vdi.h>
int vdi_arb_mode_set(u_int mode);
int vdi_arb_mode_get(u_int *mode);

DESCRIPTION vdi_arb_mode_set()
controls the arbitration mode of the VMEbus arbiter. This can only
altered if the board is system controller (VMEbus slot 1).

vdi_arb_mode_get()
Checks whether the board is slot-1 device and returns the current
tration mode.

Note: Software cannot detect whether the board is mounted in
VMEbus slot 1 in case of S4 based hardware. In this case,
vdi_arb_mode_get() always returns the current setting of the
arbiter, regardless whether it is enabled or not.

VARIABLES mode
arbitration mode, for possible values see below:
Solaris VMEbus Driver Page 109

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
RETURN
VALUES

VDI_SUCCESS
if successful.

VDI_INVALID
parameter mode is invalid, arbitration mode is not supported, or the
CPU board is not the system controller.

Table 7 Arbitration modes

VME_ARB_OFF The board is not system controller (slot-1 de-
vice).

VME_ARB_SINGLE Single level arbiter on level 3

VME_ARB_RR Round robin arbiter

VME_ARB_PRI Priority arbiter (level 3 = highest priority)

VME_ARB_PRIRR Combined round robin / priority arbiter.
Level 3 requests always have the highest pri-
ority, levels 0, 1 and 2 are handled in round
robin fashion.
Page 110 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

ce.
 or

DI
EXAMPLE void ena_roundrobin()
{

int arb;

/* Check slot-1
 */
vdi_arb_mode_get(&arb);

if (arb == VME_ARB_OFF)
{

cmn_err(CE_WARN,
 “Board is not mounted in slot 1”);

}
else
{

/* Set round-robin arbitration
 */
if (vdi_arb_mode_set(VME_ARB_RR) != VDI_SUCCESS

)
{

cmn_err(CE_WARN, “Failed to set arbiter
to RR”);

}
}

}

5.4.3 vdi_attach

SYNTAX #include <sys/vdi.h>
int vdi_attach(dev_info_t *dip, void *infop);

DESCRIPTION vdi_attach()has to be called before any other VDI function in order
to ensure that the driver’s parent VME Nexus provides the VDI interfa
The preferred location to invoke this function is within a driver’s probe
attach routine.

VARIABLES dip

The device info-pointer of the calling driver.

infop

Must be set to NULL.

RETURN
VALUES

VDI_SUCCESS
if successful.

VDI_FAILURE
the parent VME nexus driver does not support the VDI calls. No V
function must be called in this case.
Solaris VMEbus Driver Page 111

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

e

EXAMPLE static int mydrv_probe (dev_info_t *dip)
{
 if (VDI_SUCCESS == vdi_attach(dip, NULL))
 {
 return (DDI_PROBE_SUCCESS);
 }

/* Required VDI support not present
*/

 return DDI_PROBE_FAILURE;
}

5.4.4 vdi_brel_set(), vdi_brel_get()

SYNTAX #include <sys/vdi.h>
int vdi_brel_set(int mode);
int vdi_brel_get(int *mode);

DESCRIPTION vdi_brel_set()
controls how the VME bus is released after a master cycle has com-
pleted.

vdi_brel_get()
returns the current release mode.

VARIABLES mode
bus release mode for future master transfers, for possible values see
below:

RETURN
VALUES

vdi_brel_get() returns the current release mode.

vdi_brel_set() returns one of the following values:

VDI_SUCCESS
if successful.

VDI_INVALID
if the parameter mode is invalid or the release mode is not supported.

Table 8 Bus release modes

VME_BRL_ROR Release bus on request (BR[]* asserted)

VME_BRL_RWD Release bus after transfer is completed (“Releas
when done”)

VME_BRL_RAT Release bus after timeout

VME_BRL_ROC Release when bus is clear (BCLR* asserted)
Page 112 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
EXAMPLE {
int brel;
...
if (vdi_brel_set(VME_BRL_RWD) != VDI_SUCCESS)
{

… /* ERROR */
}
...
if (vdi_brel_get(&brel) != VDI_SUCCESS)
{

… /* ERROR */
}
...

}

5.4.5 vdi_breq_set(), vdi_breq_get()

SYNTAX #include <sys/vdi.h>
int vdi_breq_set(int mode);
int vdi_breq_get(int *mode);

DESCRIPTION vdi_breq_set()
controls how the VMEbus is requested for master transfers. The nor-
mal operation should be fair mode. Otherwise, other bus participants
being further down the daisy chain may starve when many transfers are
done in demand mode.

vdi_breq_get()
returns the current request mode.

VARIABLES mode
bus request mode for future master transfers, for possible values see
below:

RETURN
VALUES

vdi_breq_get() returns the current request mode.

vdi_breq_set() returns one of the following values:

VDI_SUCCESS
if successful.

VDI_INVALID
if the parameter mode is invalid or the request mode is not supported

Table 9 Bus request modes

VME_BRQ_FAIR Request in fair mode, i.e. wait for BG[]* to be
cleared.

VME_BRQ_DEMAND Request in demand mode, i.e. assert BG[]*
immediately.
Solaris VMEbus Driver Page 113

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
EXAMPLE {
int brm;
...
if (vdi_breq_set(VME_BRQ_DEMAND) != VDI_SUCCESS)
{

… /* ERROR */
}
...
if ((rc = vdi_breq_get(&brm)) != VDI_SUCCESS)
{

… /* ERROR */
}
...

}

5.4.6 vdi_brl_set(), vdi_brl_get()

SYNTAX #include <sys/vdi.h>
int vdi_brl_set(int level);
int vdi_brl_get(int *level);

DESCRIPTION vdi_brl_set()
controls the VME request level on which the bus shall be requested for
master transfers.

vdi_brl_get()
returns the current request level.

VARIABLES level
bus request level for future master transfers (0, 1, 2, or 3)

RETURN
VALUES

vdi_brl_get() returns the current request level.

vdi_brl_set() returns one of the following values:

VDI_SUCCESS
if successful.

VDI_INVALID
if the parameter level is invalid or the request level is not supported.

EXAMPLE {
int brm;
...
if (vdi_brl_set(2) != VDI_SUCCESS)
{

… /* ERROR */
}
...
if (vdi_brl_get(&brm) != VDI_SUCCESS)
{

… /* ERROR */
Page 114 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
}
...

}

5.4.7 vdi_dma_start()

SYNTAX #include <sys/vdi.h>
int vdi_dma_start(

bt_t bt,
vmeaddr_t vmeaddr,
lbaddr_t *lbaddr,
uint_t len,
uint_t flags,
int (*waitfp)(caddr_t),
caddr_t arg,
void (*callback)(caddr_t),
caddr_t cbarg,
int *rc);

DESCRIPTION vdi_dma_start() is an interface to the on-board VMEbus DMA
controller. It programs the source and destination registers and starts the
DMA transfer.

If the DMAC is not immediately available, the value of (*waitfp)()
determines which action is taken. If the value of (*waitfp)() is
DDI_DMA_DONTWAIT, vdi_dma_start() will return immediately.
The value DDI_DMA_SLEEP will cause the thread to sleep and not re-
turn until the current DMA transfer has been finished. Any other value is
assumed to be a callback function address. In that case,
vdi_dma_start() returns immediately and the (*waitfp)()
function is called when the DMAC might have become available (note
that it will be called from a low-level interrupt context).
When the callback function (*waitfp)() is called, it should attempt
to allocate the DMAC again. If it succeeds or does not need the DMAC
any more, it must return the value 1. If it tries to allocate the DMAC, but
fails to do so, it must return 0.
When the DMA transfer is terminated, successfully or not, the callback
function (*callback)() is called with the argument cbarg from the
DMA interrupt routine and rc is set to VDI_SUCCESS if it terminated
successfully, otherwise to VDI_FAILURE. If the value of callback is
void (*)()1, vdi_dma_start() will cause the thread to sleep
and not return until the current DMA transfer has been terminated.

VARIABLES bt
encoded VMEbus address modifier and access-mode (see section 6
“VME Bus Properties” on page 159).
Solaris VMEbus Driver Page 115

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

n-
the

cts.

 by

s are

es

ter-
vmeaddr
VMEbus address. Must fit the DMA controller’s alignment co
straints. They can be detected with the function vdi_info (refer to
Release Notes for information on hardware dependencies).

lbaddr
address of the memory object in the format the dma controller expe
This can be obtained by a call to ddi_dma_buf_bind_-
handle(9f), it is the cookie.dmac_address value. The DMA
handle required for using the DDI DMA functions can be obtained
vdi_dmac_alloc_handle() (p. 120).

len
number of bytes to transfer.

flags
DDI_DMA_READ or DDI_DMA_WRITE

waitfp
address of a function to call back later if the requested resource
not available. The function addresses DDI_DMA_SLEEP and
DDI_DMA_DONTWAIT are accepted to either wait until the resourc
are available or not to wait (and not to schedule a callback).

arg
argument to be passed to the callback function waitfp if such a func-
tion is specified

callback
address of a function to call back later when the DMA transfer is
minated. Can be NULL.

cbarg
argument to be passed to the callback function callback if such a
function is specified

rc
pointer to the return value of the DMA termination routine
Page 116 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
RETURN
VALUES

VDI_SUCCESS
DMA has successfully been started.

VDI_DMA_BUSY
DMA controller is busy. Another VME DMA transfer is currently run-
ning.

VDI_DMA_INVALID
unsupported bus type or invalid parameter (unaligned address, invalid
size, etc.)

If the DMA transfer is terminated due to an error condition, rc is set to
-1, otherwise, to 0.

EXAMPLE static void vmedma_done();
static int vmedma_rc;

static int
vmedma_strategy (register struct buf *bp)
{
 int ok = 1;
 int flags; /* flags to pass to ddi_dma_buf_setup */
 ddi_dma_cookie_t dma_cookie;
 uint_t ccount;
 int rc;

 FLOW_DPRINTF
((VME_DMA_DEBUG | VME_FLOW_DEBUG |

VME_LEAF_DEBUG),
("start vmedma_strategy()\n"));

 flags = DDI_DMA_SBUS_64BIT;

 /* Set DMA request flags based on struct buf flags */
 if (bp->b_flags & B_READ)
 {
 flags |= DDI_DMA_READ;
 DPRINTF ((VME_DMA_DEBUG | VME_LEAF_DEBUG),
 ("vmedma_strategy(): READ\n"));
 }
 else if (bp->b_flags & B_WRITE)
 {
 flags |= DDI_DMA_WRITE;
 DPRINTF ((VME_DMA_DEBUG | VME_LEAF_DEBUG),
 ("vmedma_strategy(): WRITE\n"));
 }
Solaris VMEbus Driver Page 117

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
 /*
 * new DMA interface
 */
 if ((ddi_dma_buf_bind_handle (

vmedma_handle,
/* previously allocated DMA handle
* in vmedma_attch() routine with
* ddi_dma_alloc_handle()
*/

bp, /* pointer to buf structure
*/

flags, /* Action, what to do */
DDI_DMA_SLEEP,/* Adress of a callback

function if
* resources are not available now.
* DDI_DMA_SLEEP = wait until
* resources are available
*/

(caddr_t) 0,/* argument passed to the
callback

* function
*/

&dma_cookie,/* pointer to the first
* ddi_dma_cookie struct
*/

&ccount)/* on successfull return, count
* points to value representing the
* number of cookies for this
* DMA object
*/

!= DDI_DMA_MAPPED))
{

cmn_err (CE_NOTE, "ERROR:
vmedma: ddi_dma_buf_bind_handle failed");

bp->b_resid = bp->b_bcount;
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
biodone (bp);
ok = 0;

}

if (ok)
 {
 /* uio_loffset is adjusted in physio.
 * Note that we need uio_loffset, because vmeaddr_t
 * is a 64 bit datatype!
 */

vme_addr = (vmeaddr_t) vmedma_uiop->uio_loffset;
DPRINTF ((VME_DMA_DEBUG | VME_LEAF_DEBUG),

("vmedma_strategy():
vmeaddr (physical) = 0x%lx\n",
(u_long) vme_addr));

Page 118 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
 /*
 * start DMAC
 * if busy, sleep
 * call vmedma_done(bp) when done.
 */
 rc = vdi_dma_start

(vme_space,
 (vmeaddr_t) vme_addr,
 (lbaddr_t) dma_cookie.dmac_address,
 (uint) bp->b_bcount,
 (uint) flags,
 DDI_DMA_SLEEP,
 NULL,
 vmedma_done,
 (caddr_t) bp,
&vmedma_rc);

 if (rc != VDI_SUCCESS)
 {

DPRINTF ((VME_DMA_DEBUG | VME_ERROR_DEBUG
|

VME_RESOURCE_DEBUG | VME_LEAF_DEBUG),
 ("vmedma_strategy():

vdi_dma_start failed: %d\n", rc));

ddi_dma_unbind_handle (vmedma_handle);
vdi_to_errno (&rc);
bp->b_resid = bp->b_bcount;
bp->b_flags |= B_ERROR;
bp->b_error = rc;
biodone (bp);
ok = 0;

 }
 }

FLOW_DPRINTF ((VME_DMA_DEBUG | VME_FLOW_DEBUG |
VME_LEAF_DEBUG),
("end vmedma_strategy(): allways 0\n"));

return (0);
}
/* end of "vmedma_strategy()" */
Solaris VMEbus Driver Page 119

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
5.4.8 vdi_dmac_alloc_handle()

SYNTAX #include <sys/vdi.h>
int vdi_dmac_alloc_handle(

dev_info_t *dip, /* caller’s dip */
int (*callback)(caddr_t),/* callback fct.

*/
caddr_t arg, /* callback arg. */
ddi_dma_handle_t *handlep);/* ptr. to

handle */

DESCRIPTION vdi_dmac_alloc_handle() allocates a DMA handle for the DMA
controller built into the VMEbus interface chip. A DMA handle is re-
quired as input parameter to all other DMA related functions provided by
the DDI.
vdi_dmac_alloc_handle() is basically identical to the DDI func-
tion ddi_dma_alloc_handle(9f), except that the attr parameter
is missing. vdi_dmac_alloc_handle() internally uses an at-
tributes structure that fits to the DMA controller used within the VMEbus
interface chip. Therefore, the interface to the DMA controller is hardware
independent.
Except for the missing attr parameter, the parameters have the same
semantics as described in ddi_dma_alloc_handle(9f):

dip
is the device info-pointer of the calling device driver.

callback
describes the behavior if no resources are available, i.e.
DDI_DMA_SLEEP, DDI_DMA_DONTWAIT or the address of a call-
back function.

arg
is the argument to be passed to the callback function described by the
callback argument.

handlep
is a pointer to where the DMA handle is stored if the request is suc-
cessful.

RETURN
VALUES

Refer to ddi_dma_alloc_handle(9f).

VDI_NOTSUP
the VMEbus interface chip does not have a DMA controller. In this
case, the returned DMA handle is invalid.
Page 120 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

f
e

5.4.9 vdi_error_info()

SYNTAX #include <sys/vdi.h>
int vdi_error_info(vme_errinfo_t *err_infop,

u_int flags);

DESCRIPTION vdi_error_info()
returns monitored amount of errors that have occurred during system
runtime.

Note: Errors caused by DMA transactions are not covered by this
mechanism since they are handled by the DMA interfaces.

VARIABLES err_infop
is a pointer to a structure of type vme_errinfo_t which is defined
in sys/vme.h (for a description of the structure, see section 4.5.21
“vui_error_info()” on page 96)

flags
is a bit set which may contain the following elements:

Note: It may be that error event(s) are dropped when using the flag
VME_SLEEP. This is the case when an error occurs in the time
between issuing one of the above function calls and actually waiting
for an error event. To prevent such problems, the application
programmer should set a timeout which interrupts the wait state
from time to time and should then check the error counters.

RETURN
VALUES

VDI_INTR
if a wait state has been interrupted by a signal.

VDI_INVALID
if invalid flags were provided.

VDI_SUCCESS
in all other cases.

VME_SLEEP waits for the next error event increasing one o
the error counters before returning counters. Th
wait state is interruptible by a signal. The data
stored to err_infop will be updated even if
the wait state was interrupted by a signal.

0 returns counters immediately.
Solaris VMEbus Driver Page 121

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
5.4.10 vdi_event_setup(), vdi_event_release()

SYNTAX #include <sys/vdi_types.h>
#include <sys/vdi.h>
int vdi_event_setup(

dev_info_t *dip,
int event,
void (*cb)(caddr_t)cb,
int cbarg);

int vdi_event_release(
dev_info_t *dip,
int event);

DESCRIPTION vdi_event_setup()
installs a callback function for the specified VMEbus event for the
calling device. If the event has already been attached successfully by
some driver, the function fails.

vdi_event_release()
detaches the driver identified by dip from the specified event, i.e. the
event handler will not be called any more and the default behavior is
resumed.

VARIABLES dip
device info pointer of calling device

event
event type to control; for possible values see below.

Note: It is recommended to set the IMM_CALLBACK flag, because
there is no other way to request the current status of the ACFAIL
and SYSFAIL lines.
Page 122 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

s
d-

w

cb
pointer to function to be called when the event occurs. It is scheduled
in low-level interrupt context.

cbarg
argument to be passed to callback function

RETURN
VALUES

vdi_event_setup() returns one of the following values:

VDI_SUCCESS
if the callback function is installed successfully.

VDI_FAILURE
if the specified event is already attached or the VME interface hard-
ware does not support receipt of this event.

Table 10 VMEbus events

Literal Description and default behavior

VME_SYSFAIL VME SYSFAIL line is asserted; can
be ORed with IMM_CALLBACK (see
below)

see section 3 “Installation and
Configuration Guide” on
page 15

VME_NSYSFAIL VME_SYSFAIL line is negated; can
be ORed with IMM_CALLBACK (see
below)

VME_ACFAIL VME ACFAIL line is asserted; can
be ORed with IMM_CALLBACK (see
below)

VME_NACFAIL VME ACFAIL line is negated; can be
ORed with IMM_CALLBACK (see
below)

IMM_CALLBACK Optional flag to be used together with one of the above literals.

• If set, vdi_event_setup() checks whether the selected event i
currently active. If this is the case, the callback function is sche
uled immediately.

• If not set, the callback function is scheduled at the next high-to-lo
transition (VME_SYSFAIL, VME_ACFAIL) or low-to-high transi-
tion (VME_NACFAIL, VME_NSYSFAIL), regardless of the cur-
rent state.

VME_ABORT Abort switch on the front panel is
triggered

System enters the PROM
monitor. If the system has been
booted with the kernel debugger,
it will jump into kadb, instead.
Solaris VMEbus Driver Page 123

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
vdi_event_release() returns one of the following values:

VDI_SUCCESS
if the callback function is removed successfully.

VDI_FAILURE
if the event has been set up by some other device (not the one specified
by dip) or if it hasn’t been set up at all.

EXAMPLE static kmutex_t event_mutex;
static kcondvar_t event_cv;

void myinit()
{

mutex_init(&event_mutex, “mymutex”, MUTEX_DRIVER, NULL);
cv_init(&event_cv, “mycv”, CV_DRIVER, NULL);

}

/* event callback function. Trigger conditional variable and
* exit.
*/

static void
event_cb(void* arg)
{

/* This may block until cv_wait is called (see below)
 */
mutex_enter(&event_mutex);
cv_signal(&event_cv);
mutex_exit(&event_mutex);

}

void
wait_for_sysfail_negated()
{

/* Wait for SYSFAIL to be cleared. The mutex is necessary
* because our callback funtion may get called before

 * vdi_event_setup() returns (if SYSFAIL is already
 * cleared).
 */
mutex_enter(&event_mutex);

if (vdi_event_setup(vmectldip,
VME_NSYSFAIL|IMM_CALLBACK,
event_cb, (void *)NULL) != VDI_SUCCESS)

{
cmn_err(CE_WARN, "vdi_event_setup failed");

}

Page 124 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
else
{

/* wait for callback function to be triggered
 */
cv_wait(&event_cv, &event_mutex);

/* SYSFAIL has been cleared, release event
*/
if (vdi_event_release(vmectldip, VME_NSYSFAIL)

!= VDI_SUCCESS)
{

cmn_err(CE_WARN, "vdi_event_release
failed");

}
}
mutex_exit(&event_mutex);

}

5.4.11 vdi_info()

SYNTAX #include <sys/vdi.h>
void vdi_info(vdi_info_t **info);

DESCRIPTION vdi_info()
returns hardware information within the following structure of type
vdi_info_t which is defined in vdi_types.h:

struct vdi_info
{

int hostbus;
/* Bus the VME bridge resides on. */

char if_name[32];
/* Name of VME interface hardware */

char cpu_name[32];
/* Name of CPU board */

int if_rel;
/* Version of interface hardware */

int lca_rel;
/* Version of LCA */

event_t events;
/* Events which can be used */

int event_ipl;
/* Interrupt priority event handlers */

vdi_arb_capabilities_t
*arb_caps;
/* Arbiter capabilities */

vdi_req_capabilities_t
*req_caps;
/* Requestor capabilities */

vdi_dma_capabilities_t
*dma_caps;
/* DMA capabilities */

vdi_event_capabilities
*event_caps;
Solaris VMEbus Driver Page 125

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

rd’s
nt.

rd’s
 is
/* event capabilities */
vdi_master_capabilities_t

*master_caps;
/* master mapping capabilities */

vdi_slave_capabilities_t
*slave_caps;
/* slave mapping capabilities */

}
typedef struct vdi_info vdi_info_t;

Note: The contents of the various capability structures are mainly
used internally by the VME nexus driver and not all of them are of
use and interest to the device driver developer. For this reason, only
a subset of their contents is listed here. Refer to sys/vdi_types.h
for further information.

hostbus
denotes the local bus the VMEbus bridge resides on. Currently it can
be one of VME_IOB_SBUS, VME_IOB_PCI, or VME_IOB_MBUS.

if_name
is a string containing the name of the localBus-to-VMEbus interface
chip, also called the hardware identifier, e.g. FGA-5000 (refer to the
Release Notes).

cpu_name
is a string containing the name of the CPU board. It is the value of the
name property in the OBP root node.

if_rel
is the revision number of the VMEbus interface hardware.

events
specifies the events that can be used in vdi_event_setup() /
~_release() (p. 122).

event_ipl
is the interrupt level at which event handlers will be called by the VDI.

arb_caps
is a pointer to a structure describing the capabilities of the boa
VMEbus arbiter. It is NULL if no software arbiter support is prese
The structure contains the u_int arbiter_modes bit mask de-
scribing the arbiter modes that can be programmed (VME_ARB_xx lit-
erals, see vme_types.h).

req_caps
is a pointer to a structure describing the capabilities of the boa
VMEbus requester. It is NULL if no software requester support
present. The structure consists of:
Page 126 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

ach

pro-

pro-

rd’s

 be

nd

nd

with
f

red

nes
L).

 re-
– char br_lvls[4]
which lists the bus request levels that can be programmed. E
element can contain the numbers 0 through 3, denoting a bus
request level.

– u_int br_reqmodes
which is a bit set describing the request modes that can be
grammed (VME_BRQ_xxx literals, see vme_types.h).

– u_int br_relmodes
which is a bit set describing the release modes that can be
grammed (VME_BRL_xxx literals, see vme_types.h).

dma_caps
is a pointer to a structure describing the capabilities of the boa
DMA controller. It is NULL if no DMA controller is present. The
structure consists of:

– vhi_bt_cap_t bustypes
which is a structure containing the VMEbus properties that can
programmed for DMA transfers (see sys/vme_types.h).

Note: Note that for compatibility reasons the variable still is called
bustypes although bus properties are meant here.

– vmeaddr_t vme_align
which is the required alignment for the VMEbus start and e
address used for DMA transfers.

– lbaddr_t buf_align
which is the required alignment for the DMA buffer’s start and e
address used for DMA transfers.

event_caps
is a pointer to a structure describing the capabilities of the board
respect to events (ACFAIL, SYSFAIL, ABORT, etc.). It is NULL i
no event support is present. The structure consists of:

– event_t trigger_mask
which is a bit mask describing the events that can be trigge
(including VMEbus interrupts).

– event_t assert_mask
which is a bit mask describing the events whose VME status li
can be asserted or negated (for example for ACFAIL or SYSFAI

master_caps
is a pointer to a structure describing the board’s capabilities with
spect to master transfers. The structure consists of:

– int nranges
which is the number of available master windows.
Solaris VMEbus Driver Page 127

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

 to
ard-
 the
the

ial
rds,
A24)
E-

 of

 all

rd’s

rty

o all

ies
ace

s
r or
ies:

r,
– u_int flags
which contains various flags.

If ASPACE_OVERLAP is set, a master window provides access
all VMEbus address ranges, like for example on S4 based h
ware where the A24 space is taken from the last 16 MByte of
A32 master window and the A16 space from the last 64K of
A24 range.

The ODD_256M flag indicates, in addition to the above, the spec
implementation of the S4 chip on Force Computers’ CPU boa
where overlapping of address ranges (thus access to A16 and
is only possible if the A32 range lies on an odd 256 MByte VM
bus address boundary (refer to the Release Notes for details).

– vhi_bt_cap_t bt_win
which is a structure containing information about the properties
the master windows.

– bt_t bt_global
which lists the bus properties that can be applied globally to
master windows.

slave_caps
is a pointer to a structure describing the capabilities of the boa
VMEbus slave interface. The structure consists of:

– int nranges
which specifies the number of available slave windows.

– vhi_bt_cap_t bt_win
which is a structure containing information about the bus prope
capabilities of the available slave windows.

– bt_t bt_global
which contains the bus properties that can be applied globally t
slave windows.

– vhi_bt_cap_t bt_regslave
which is a structure containing information about the capabilit
of the slave window that provides access to the VMEbus interf
registers from VME.

The structure of type vhi_bt_cap_t is used to describe propertie
of objects that can have certain bus properties (usually maste
slave windows). It is necessary to distinguish between 3 possibilit

– the bus property can be enabled or disabled by the programme

– the bus property is always enabled,

– or the bus property is always disabled.
Page 128 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
This is expressed by the structure elements bt_change and
bt_fix, which are both of type bt_t:

VARIABLES info
pointer to vdi_info_t structure pointer. Do not change any con-
tents of this structure, as it is used globally throughout the VME nexus
and leaf drivers.

EXAMPLE {
vdi_info_t *misc_info;
...
if (vdi_info(&misc_info) != VDI_SUCCESS)
{

… /* ERROR */
}
...

}

State of bit #n in

Implicationbt_change bt_fix

set cleared bus prop. #n can be switched on
or off

cleared cleared bus property #n is always
switched off

cleared set bus property #n is always
switched on
Solaris VMEbus Driver Page 129

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
5.4.12 vdi_intr_acknowledge()

SYNTAX #include <sys/vdi.h>
int vdi_intr_acknowledge(dev_info_t *dip, u_int inumber);

DESCRIPTION vdi_intr_acknowledge()
returns the obtained interrupt vector if the interrupt acknowledge cycle
completed successfully.

VARIABLES dip
device info pointer of calling device

inumber
specifies the index of the (level, vector) pair in the interrupts
property which describes the interrupt to be acknowledged. inumber
is zero based (see ddi_add_intr(9F)).

RETURN
VALUES

VDI_SUCCESS
if successful.

VDI_INVALID
in case of an invalid parameter, most likely inumber is out of limits.

VDI_FAILURE
if the interrupt vector could not be obtained due to a VME bus error or
a timeout.
Page 130 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
EXAMPLE Fragment of mydriver.conf:
grab VME level 1 by specifying a vector of -1
#
interrupts=1,-1

Device registers at VME A32D32 @0x40000000, size 4K
#
reg=0x4d,0x40000000,0x1000

Fragment of driver source:
#include <sys/types.h>
#include <sys/sunddi.h>
#include <sys/vdi.h>
...
static char *regs;
static dev_info_t *mydip;
static u_int my_intr(caddr_t arg);
static int
mydriver_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

mydip = dip;
(...)

/* Install an interrupt handler “my_intr” for interrupt
 * property 0. Pass the property number as argument
 */
if (ddi_add_intr(dip, 0, NULL, NULL, my_intr, 0)

 != DDI_SUCCESS)
{

cmn_err(CE_WARN, “failed to grab interrupt”);
return DDI_FAILURE;

}

/* Map the device registers */
(char*)ddi_map_regs(dip, 0, ®s, 0, 0);
(...)

}

static u_int my_intr(caddr_t arg)
{

int vec;

/* Do the IACK cycle and fetch the interrupt vector.
 * “arg” is the inumber of the interrupt property.
 */
vec = vdi_intr_acknowledge(mydip, (u_int)arg);
if (vec < 0)
{

cmn_err(CE_WARN, “my_intr: IACK failed: %d”, vec
);

}
...
/* Access the reg. to clear the interrupt (example) */
regs[0] = 0xff;
return DDI_INTR_CLAIMED;

}

Solaris VMEbus Driver Page 131

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
5.4.13 vdi_intr_generate()

SYNTAX #include <sys/vdi.h>
int vdi_intr_generate(int level, int vector);

DESCRIPTION vdi_intr_generate()
triggers a VMEbus interrupt. It does not provide the possibility to set
the IACK time-out. For this reason, it will wait endlessly until the
IACK is finished. The wait status is interruptible by a signal.

See vdi_virq_trigger() (p. 156) for a more flexible interface.

Note: The generation of interrupts is hardware dependent.
Therefore, refer to the Release Notes whether this feature is
supported on the CPU board under consideration.

VARIABLES level
VME interrupt level to trigger

vector
interrupt vector to use

RETURN
VALUES

VDI_SUCCESS
if successful.

VDI_FAILURE
if parameters are invalid or if action is not supported.

VDI_INTR
if the wait state has been interrupted by a signal.

5.4.14 vdi_map(), vdi_unmap()

Note: As of Solaris VMEbus Driver release 2.1 the
vdi_map_abs() function is supported. It is strongly recommended
to use vdi_map_abs(), instead of vdi_map().

SYNTAX #include <sys/vdi.h>
u_int vdi_map(bt_t bt, vmeaddr_t vmeaddr, u_int len)
void vdi_unmap(u_int pfn)
Page 132 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

 ob-

 refer-
e

VME
DESCRIPTION vdi_map()
allocates local bus addresses and sets up a local- to VMEbus bus map-
ping. If the required address range fits into an existing mapping, only a
reference count for that mapping is incremented.

This routine does not set up a mapping to actually access the VME
memory. It is intended to be used by drivers that want to provide a
mmap() entry for applications. The driver’s mmap() routine has to
provide the correct page frame number when called, which can be
tained by vdi_map().

vdi_unmap()
frees local bus addresses and decrements reference count. If the
ence count reaches 0, the corresponding entries in the VME MMU ar
invalidated.

VARIABLES bt
bus properties as defined in vme_types.h (see section 6 “VME Bus
Properties” on page 159): e.g. VME_BT_A32, VME_BT_A24,
VME_BT_D8, or VME_BT_D32.

vmeaddr
absolute VMEbus address to be mapped

len
amount of VMEbus space to be mapped

pfn
page frame number, return value of vdi_map()

RETURN
VALUES

pfn
page frame number of local bus address

-1
There is no local bus address space available or no entries in the
MMU are available.
Solaris VMEbus Driver Page 133

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

Ebus
only

em-
EXAMPLE {
u_int pfn;
int retval = 0;
...
pfn = vdi_map(vmeplusdip, VME_BT_A32 | VME_BT_D32,

(vmeaddr_t)0x60000000, (u_int)0x100);
if (pfn == (u_int)-1)
{

cmn_err("vmeplus_segmap: vdi_map failed\n"));
retval = EINVAL;

}
else
{

...
vdi_unmap(pfn);

}
...
return (retval);

}

5.4.15 vdi_map_abs(), vdi_map_regspec()

SYNTAX #include <sys/vdi.h>
int vdi_map_abs(dev_info_t * dip,

bt_t bt,
vmeaddr_t vmeaddr,
off_t len,
u_int flags,
u_int *pfnp);

int vdi_map_regspec(
dev_info_t * dip,
int rnumber,
vmeaddr_t off,
off_t len,
u_int flags,
u_int *pfnp);

DESCRIPTION vdi_map_abs()
is an extension to vdi_map() allowing extended configuration of the
mapping’s setup and providing error information.

vdi_map_regspec()
is an extension to ddi_map_regs() which allows mapping in
VMEbus space based on a driver’s regspec definition (reg proper-
ty) without mapping the memory in the kernel space.

Both functions allocate local bus addresses and set up a local- to VM
mapping. If the required address range fits into an existing mapping,
a reference count for that mapping is incremented.
The functions do not set up a mapping to actually access the VME m
ory.
Page 134 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

 by

using
.g.
bus

ber

le,
.
see

d to if
They are intended to be used by drivers that want to provide an mmap()
entry for applications. The driver’s mmap() routine has to provide the
correct page frame number when called, which can be obtained
vdi_map().
The functions may be used to ensure that later mapping requests
ddi_map_regs() do not fail due to temporary lack of resources (e
VME master window). This might happen because the local-to-VME
mappings are not static, i.e. they are set up on demand.

VARIABLES dip
device info-pointer of the calling driver.

bt
bus properties as defined in vme_types.h (see section 6 “VME Bus
Properties” on page 159): e.g. VME_BT_A32, VME_BT_A24,
VME_BT_D8, or VME_BT_D32.

vmeaddr
absolute VMEbus address to be mapped

len
length to be mapped

off
offset into the register space defined by the register set num
rnumber (see ddi_map_regs(9f) man pages)

len
amount of VMEbus space to be mapped

flags
various flags controlling how the mapping is set up:

– VDI_MAPWAIT
If this flag is set and there is currently no master window availab
vdi_map_flags() waits until a master window is available
The wait status is not interruptible unless explicitly requested (
below).

– VDI_INTERRUPTIBLE
The flag only has an effect if VDI_MAPWAIT is also set. If so, the
wait status is interruptible by a signal.

pfnp
physical page number where the VMEbus space has been mappe
the operation was successful
Solaris VMEbus Driver Page 135

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
RETURN
VALUES

VDI_SUCCESS
the request succeeded.

VDI_INVALID
invalid argument

VDI_NOSPACE
not enough space available on the host bus to map the requested VME-
bus area into or not enough resources on the VMEbus interface avail-
able to fulfill the mapping request.

VDI_INTR
the VDI_MAPWAIT and VDI_INTERRUPTIBLE flags were set and
the wait status was interrupted by a signal.

VDI_CONFLICT
the mapping request could not be satisfied because it conflicted with
an existing mapping.

VDI_NOTSUP
the mapping request is not supported by the VMEbus interface chip.

VDI_FAILURE
the request failed for other reasons.

5.4.16 vdi_mbox_attach(), vdi_mbox_detach()

SYNTAX #include <sys/vdi.h>
int vdi_mbox_attach(vdi_mbox_req_t *mboxreqp)
int vdi_mbox_detach(int mboxnum)

DESCRIPTION vdi_mbox_attach()
attaches and acquires a mailbox. It will program the mailbox registers
in the VMEbus interface chip, but will neither enable the access to it
nor the IRQ. The vdi_mbox_req structure contains all information
necessary to set up the mailbox (see below).

vdi_mbox_attach() returns a mailbox number which must be
used as parameter for the other mailbox routines.

Note: Note that the mailbox interrupt is not active after this call yet.
Enable it by calling vdi_mbox_enable().

vdi_mbox_detach()
Removes a mailbox which has been allocated by
vdi_mbox_attach(). It disables the access to the mailbox and re-
moves the mailbox interrupt handler.
Page 136 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

di-

if

.

ssi-

y

VARIABLES mboxreqp
contains all information necessary to set up the mailbox. The structure
vdi_mbox_req_t is defined in vdi_types.h:

typedef struct vdi_mbox_req
(

bt_t mbox_bt;
/* In/Out: encoded address modifier(s) */

ulong_tmbox_offset_def;
/* Out: assigned mailbox address */

ulong_tmbox_offset_min;
/* In: lower addr. of mailbox addr. range */

ulong_tmbox_offset_max;
/* In: incl. upper addr. */

uint_tmbox_access;
/* In/Out: desired/actual access modes */

uint_tmbox_irq;
/* In: requested IRQ priorities */

int (*mbox_handler)(caddr_t);
/* In: pointer to mbox IRQ handler */

caddr_tmbox_handler_arg;
/* In/Out: arg passed to the handler */

} vdi_mbox_req_t;

mbox_bt
bit field with each bit representing a desired address mode and data
size. The #define statements for the bits are declared in
sys/vme_types.h (e.g.: VME_BT_A24, VME_BT_NPRV, etc.; see
section 6 “VME Bus Properties” on page 159). When returning, ad
tional bits might be set, e.g., VME_BT_NPRV when the CPU board
only supports supervisory and non-privileged accesses.

mbox_offset_def
returns the VMEbus address of the allocated mailbox
vdi_mbox_attach() succeeds.

mbox_offset_min and mbox_offset_max
specifies the address range in which the mailbox shall be allocated

mbox_access
determines by what kind of access the mailbox is triggered. The po
ble values are defined in sys/vme_types.h:

– VME_MB_RD if the mailbox shall be triggered by a read access,

– VME_MB_WR if the mailbox shall be triggered by a write access,

– or VME_MB_RDWR for both read and write access.

If this parameter is set to 0, it is implicitly set to a value supported b
the CPU board.
Solaris VMEbus Driver Page 137

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

,
d-
r-

l
ee

If

call,

t,
 as

 al-
mbox_irq
is a set of preferred interrupt priorities. A mailbox may interrupt on
7 interrupt levels, which are equivalent to the 7 VMEbus interrupt lev-
els. The VMEbus interrupt levels are mapped to the respective proces-
sor interrupt levels according to the SPARC architecture. For example,
a mailbox interrupt handler at level 7 runs at the same processor inter-
rupt level as a VMEbus interrupt service routine for level 7.

The mbox_irq parameter is a bit set of VME_MBOXIRQ1,…,
VME_MBOXIRQ7 literals. If several literals are specified
vdi_mbox_attach() selects the lowest level supported by har
ware. Setting this to 0 is equivalent to suggesting all supported inte
rupt levels.

Upon successful return, mbox_irq reflects the actual interrupt leve
selected. For further information on interrupt priorities, s
“vdi_mbox_iblock_cookie(), vdi_mbox_hilevel()” on page 143.

mbox_handler
is called on receipt of the appropriate mailbox interrupt.
mbox_handler is set to NULL, no interrupt handler will be installed
and no registers will be set up; it is assumed to be an advisory
then.

mbox_handler_arg
argument of the mbox_handler routine. If 0 is passed as argumen
the callback function will be called with the selected mailbox index
argument.

RETURN
VALUES

vdi_mbox_attach() returns one of the following values:

if successful a value equal or greater 0 is returned. This is the identi-
fier needed for referencing the allocated mailbox.

A value less than 0 indicates an error.

VDI_BUSY
a mailbox has been found which fits the given properties, but it is
ready allocated.

VDI_INVRANGE
the offset range in the vme_mbox_req structure is invalid.

VDI_INVBT
a requested bus property flag is not applicable.

VDI_INVACC
the access-mode is invalid.
Page 138 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
VDI_FAILURE
one or more arguments are invalid. Possible reasons are that no mail-
box could be found which fits the given properties.

VDI_NORESOURCES
no mailbox is available.

vdi_mbox_detach() returns one of the following values:

VDI_SUCCESS
successful.

VDI_FAILURE
the mailbox number is invalid.

VHI_INVALID
the index is out of range.
Solaris VMEbus Driver Page 139

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
EXAMPLE vdi_mbox_req_t mbox_req;
int mbox_num;
ddi_iblock_cookie_t mbox_cookie;
kmutex_t mbox_mutex;

/* Fill the mailbox request structure */
mbox_req.mbox_bt = VME_BT_D8|VME_BT_A16;
mbox_req.mbox_offset_min = (vmeaddr_t)0;
mbox_req.mbox_offset_max = (vmeaddr_t)0xffff;

/* We don’t care about the access method and let
* the VDI choose it. */
mbox_req.mbox_access = 0;

/* Don't care for a specific irq level. The VDI
will

* choose the one with the lowest priority. */
mbox_req.mbox_irq = 0;

/* Specify the callback function. We pass zero as
* argument to indicate that the interrupt handler
* should pass us the mailbox id as argument */
mbox_req.mbox_handler = mbox_intr;
mbox_req.mbox_handler_arg = NULL;

if ((mbox_num = vdi_mbox_attach (&mbox_req)) < 0)
{

 cmn_err(CE_WARN, “Failed to attach to
mailbox”);

 return;
}

/* Our sample application is not capable of
handling

* hi-level interrupts */
if (vdi_mbox_hilevel(mbox_num)) {

cmn_err(CE_WARN, “hi-level interrupt not
sup.”);

return;
}

/* initialize mutex for callback function */
vdi_mbox_iblock_cookie(mbox_num, &mbox_cookie);

mutex_init(&mbox_mutex, “my mbox mutex”,
 MUTEX_DRIVER, (void*)mbox_cookie

);

/* now enable the Mailbox
*/

 vdi_mbox_enable(mbox_num);

/* Our callback function mbox_intr() is now
receiving

* mailbox interrupts */
Page 140 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

il-

ail-
t

5.4.17 vdi_mbox_enable(), vdi_mbox_disable()

SYNTAX #include <sys/vdi.h>
int vdi_mbox_enable(int mboxnum)
int vdi_mbox_disable(int mboxnum)

DESCRIPTION vdi_mbox_enable()
enables the access to the mailbox address and the mailbox IRQ. This
can be used to enable the mailbox after a call to vme_mbox_-
attach() or vme_mbox_disable().

vdi_mbox_disable()
disables the mailbox IRQ and the access to it.

VARIABLES mboxnum
mailbox ID

RETURN
VALUES

VDI_SUCCESS
if successful.

VDI_FAILURE
if the mailbox number is invalid.

VDI_BUSY
if the specified index refers to an item which has already been allocat-
ed.

VDI_INVALID
if at least one of the parameters does not meet the restrictions in the ca-
pability structure.

EXAMPLE see “vdi_mbox_attach(), vdi_mbox_detach()” on page 136

5.4.18 vdi_mbox_getinfo()

SYNTAX #include <sys/vdi.h>
int vdi_mbox_getinfo(vdi_mbox_info_t *mboxinfop)

DESCRIPTION vdi_mbox_getinfo()
fills the mboxinfo structure with the information about the actual ava
able mailboxes. The vdi_mbox_info structure is maintained in the
VDI layer. It is updated with every vdi_mbox_attach() and
vdi_mbox_detach().

VARIABLES mboxinfop
pointer to a structure containing all available information about m
boxes. The vdi_mbox_info structure provides information abou
available mailboxes and is defined in vdi_types.h:
Solaris VMEbus Driver Page 141

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

out

low).

ee
n

mail-
tyepdef struct vdi_mbox_info
{

int nmbox;/* number of available mboxes */
int nmbox_inuse;/* number of attached mboxes */
bt_t mbox_bt;/* encoded addr. modifier(s) */
ulong_t mbox_offset_def;/* default offset */
ulong_t mbox_offset_mask;/* changeable bits in default */
uint_t mbox_access;/* possible access modes */
irq_t mbox_irq;/* possible interrupt levels */

} vdi_mbox_info_t;

nmbox
number of available mailboxes

nmbox_inuse
number of mailboxes which are currently attached

mbox_bt
informs about the maximum available address modes and data sizes
(see section 6 “VME Bus Properties” on page 159).

mbox_offset_def
offset which might be introduced by the CPU board’s register lay
(see below).

mbox_offset_mask
indicates which bits of a mailbox address can be requested (see be

mbox_access
access modes supported by the CPU board: RD or WR

mbox_irq
bit field indicating the possible mailbox interrupt levels (s
section 5.4.16 “vdi_mbox_attach(), vdi_mbox_detach()” o
page 136).

mbox_offset_def and mbox_offset_mask
describe which address can be requested for the next available
box. For example, if mbox_offset_def is 0x120 and
mbox_offset_mask is 0xfe00, selectable addresses are 0x120,
0x320, 0x520, and so on.

RETURN
VALUES

Always returns VDI_SUCCESS.

EXAMPLE {
vdi_mbox_info_t mbox_info;
...
if (vdi_mbox_getinfo(&mbox_info) != VDI_SUCCESS)
{

… /* ERROR */
}
...

}

Page 142 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
5.4.19 vdi_mbox_iblock_cookie(), vdi_mbox_hilevel()

SYNTAX #include <sys/vdi.h>
#include <sys/sunddi.h>
int vdi_mbox_iblock_cookie(int mboxnum,

ddi_iblock_cookie_t *cookiep);
int vdi_mbox_hilevel(int mboxnum);

DESCRIPTION vdi_mbox_iblock_cookie()
initializes an iblock cookie for the given mailbox. The iblock cookie
can be used for setting up a mutex which is safe to use within the call-
back function of the mailbox.

vdi_mbox_hilevel()
returns information indicating whether the callback function of the
given mailbox runs in high-level interrupt context or not.

These functions are equivalent to ddi_get_iblock_cookie(9f)
and ddi_intr_hilevel(9f) respectively.

VARIABLES mboxnum
the mailbox ID obtained by vdi_mbox_attach().

cookiep
a pointer to an iblock cookie to be initialized.

RETURN
VALUES

vdi_mbox_iblock_cookie() returns one of the following values:

VDI_SUCCESS
if the iblock cookie was initialized successfully.

VDI_INVALID
if invalid parameters were specified, e.g. if mboxnum does not denote
an existing mailbox identifier.

vdi_mbox_hilevel returns 0 if the callback function for the given
mailbox runs in low-level interrupt context, or 1 if it runs in high-level
interrupt context.

EXAMPLE see “vdi_mbox_attach(), vdi_mbox_detach()” on page 136
Solaris VMEbus Driver Page 143

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

a-
5.4.20 vdi_reg_read(), vdi_reg_write()

SYNTAX #include <sys/vdi.h>
int vdi_reg_read(u_long reg, u_long *value)
int vdi_reg_write(u_long reg, u_long value)

DESCRIPTION vdi_reg_read()
reads the contents of the VMEbus hardware register set specified by
reg and stores it in value.

vdi_reg_write()
writes the contents specified by value to the VMEbus hardware reg-
ister set specified by reg.

VARIABLES reg
register identifier. For a list of the available register identifiers see the
respective interface’s header file (e.g., fga5000.h). For register ar-
rays, the macro VME_REGARR can be used to calculate the correct p
rameter for a given index.

value
register content to be written

RETURN
VALUES

VDI_SUCCESS
if successful.

VDI_FAILURE
if an error occurred while accessing the register.

VDI_ALIGN
VDI_OFFSET
VDI_SIZE

if the register alignment, offset, or size denoted by the reg parameter
is invalid.

VDI_INVALID
if some other argument is invalid.
Page 144 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

”

EXAMPLE {
int rc, retval = 0;
u_long regaddr;
u_long regval=0;

rc = vdi_reg_write(F50_REG_FMB_ADDR, regval);
if (rc != VDI_SUCCESS)
{

retval = rc;
}

rc = vdi_reg_read(F50_REG_FMB_ADDR, ®val);
if (rc != VDI_SUCCESS)
{

retval = rc;
}

rc = vdi_reg_read(VME_REGARR(F50_REG_SBUS_RANGE, 2),
®val);

if (rc != VDI_SUCCESS)
{

retval = rc;
}

return(retval);
}

5.4.21 vdi_regslave_set(), vdi_regslave_get()

SYNTAX #include <sys/vdi.h>
int vdi_regslave_set(bt_t bustype, vmeaddr_t vstart)
int vdi_regslave_get(bt_t *bustype, vmeaddr_t *vstart)

DESCRIPTION vdi_regslave_set()
enables register access to the VME interface chip from the VMEbus
and sets the base address. Note that there might be hardware specific
side effects (e.g. concerning the FGA-5000: setting the register slave
base address also affects the possible addresses for mailboxes).

vdi_regslave_get()
returns the current status of the register slave window (i.e. whether it is
set or not and to which address it is set).

VARIABLES bustype
bus properties of register slave (see section 6 “VME Bus Properties
on page 159)

Note: Note that for compatibility reasons the variable still is called
bustype although bus properties are meant, here.
Solaris VMEbus Driver Page 145

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
vstart
base address for slave registers

RETURN
VALUES

vdi_regslave_set() returns one of the following values:
VDI_BUSY

if the mailbox is in use.

VDI_INVALID
if the parameters do not meet the requirements given in the slave capa-
bility structure.

VDI_SUCCESS
if successful.

vdi_regslave_get() returns one of the following values:
VDI_RSWSET

if the register slave window is currently enabled.

VDI_RSWNOTSET
if the register slave window is currently not enabled.

EXAMPLE {
int rc, retval;
vmeaddr_t vstart=0;
bt_t bt=VME_BT_A16;

rc = vdi_regslave_set(bt, vstart);
if (rc != VDI_SUCCESS)
{

/* error */
retval = rc;

}

rc = vdi_regslave_get(&vstart);
if (rc != VDI_RSWSET)
{

/* error */
retval = rc;

}

return(retval);
}

Page 146 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
5.4.22 vdi_rmw()

SYNTAX #include <sys/vdi.h>
int vdi_rmw(caddr_t kva, u_char *data);

DESCRIPTION vdi_rmw()
performs an atomic read-modify-write cycle on the specified address.
It is assumed that kva represents a properly mapped VME master win-
dow (e.g. via ddi_map_regs(9F)).

VARIABLES kva
kernel address where to perform a read-modify-write cycle

data
address used as data source and destination

RETURN
VALUES

VDI_SUCCESS
if successful.

VDI_INVALID
if no master window is defined which covers the specified address.

VDI_FAILURE
if an error occurred, e.g a VME bus error.

EXAMPLE {
int rc;
caddr_t reg;
int minor = getminor (dev);
u_char rmwval = 0xff;

/* Map the address we want to RMW */
if (ddi_map_regs (mydip, minor, ®,

(off_t) vmeaddr,
(off_t) 0x1000)

!= DDI_SUCCESS)
{

/* error */
return ERROR;

}
if ((rc = vdi_rmw (reg, &rmwval)) != VDI_SUCCESS)
{

/* VME bus error ? */
cmn_err(CE_WARN, “RMW at address 0x%x failed\n”,

vmeaddr);
}
else
{

/* eval rmwval ... */
}
ddi_unmap_regs (vmeplusdip, minor, ®, vmeaddr,

 (off_t) 0x1000);
}

Solaris VMEbus Driver Page 147

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

its.

-

re
5.4.23 vdi_reg_space

#include <sys/vme_types.h>
#include <sys/vdi.h>
bt_t vdi_reg_space(dev_info_t *dip, int rnumber);

DESCRIPTION vdi_reg_space converts the first field (the bus type) of an entry in
the driver’s reg property into the corresponding set of bus property b
It also applies the settings done by a vdi_transfer_set() call for
this driver.

VARIABLES dip
the device-info pointer of the calling driver.

rnumber
the offset into the driver’s reg property. Refer also to
ddi_map_regs(9f).

RETURN
VALUES

Upon success, a set of VME_BT_xxx bus properties is returned which re
flects the properties of the register specification indexed by rnumber.
If rnumber is invalid, or the VMEbus access properties it reflects a
not supported by the underlying hardware, the return code is zero.

5.4.24 vdi_smem_alloc(), vdi_smem_free()

SYNTAX #include <sys/vdi.h>

int vdi_smem_alloc(
uint_t length,
vdi_smem_handle_t **handlep);

int vdi_smem_free(
vdi_smem_handle_t *handlep);

DESCRIPTION vdi_smem_alloc()
allocates shared memory for the VMEbus. vdi_smem_handle con-
tains information necessary for vdi_smem_map() and vdi_-
smem_free().

Note: Depending on the hardware architecture, shared memory
might be allocated non-cached. Once non-cached memory has been
allocated by vdi_smem_alloc(), it may no longer be available for
normal use by the virtual memory system. This is because Solaris
removes memory from the free list once it has been set to non-
cached. However, the memory will be re-used for future slave
memory requests.
Page 148 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
vdi_smem_free()
frees memory which has been allocated by vdi_smem_alloc()
previously.

VARIABLES length
length of the desired allocation in byte.

handlep
pointer to a pointer to a SMEM handle to be allocated and filled in.

RETURN
VALUES

VDI_SUCCESS
memory successfully allocated

VDI_FAILURE
allocation failed

EXAMPLE {
vdi_smem_handle_t *handlept;
...
if (vdi_smem_alloc(0x100, &handlept))
{

cmn_err(CE_WARN,
"cannot allocate space for len %d",
(int)0x100);

retval = -1;
}
else
{

...
vdi_smem_free(handlept);

}
...
return (retval);

}

5.4.25 vdi_smem_map(), vdi_smem_unmap()

SYNTAX #include <sys/vdi.h>
int vdi_smem_map(

vdi_smem_req_t *smemreqp,
vdi_smem_lim_t *smemlimp,
vdi_smem_handle_t *handlep);

int vdi_smem_unmap(
vdi_smem_handle_t *handlep);

DESCRIPTION vdi_smem_map()
maps shared on-board memory to VMEbus. vdi_smem_map() fol-
lowed by a vdi_smem_enable() call (p. 154) makes a pre-allocat-
ed region of DVMA memory accessible from the VMEbus. The caller
Solaris VMEbus Driver Page 149

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
supplies a requested VMEbus address range in the SMEM request struc-
ture. The VMEbus window is then set up so that it encloses the DVMA
range. The limit structure describes the limitations of the VMEbus
master or requester.

vdi_smem_unmap()
unmaps a shared on-board memory to VMEbus mapping and disables
access to the shared on-board memory. vdi_smem_unmap() may
be called after vdi_smem_map().

VARIABLES smemreqp
pointer to the shared memory request structure. The vdi_smem_req
structure is defined in sys/vdi_types.h:

typedef struct vdi_smem_req
{

bt_t smemr_bt;
vmeaddr_tsmemr_offset;
uint_t smemr_size;
uint_t smemr_flags;

}
vdi_smem_req_t;

Table 11 vdi_smem_req struct members

smemr_bt Encoded bus capabilities (see section 6 “VME Bus
Properties” on page 159)

smemr_offset Desired VMEbus address
Page 150 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
smemr_size Shared memory size

smemr_flags Information for mapping routines. There are 3 flags
defined: SMEM_FIXED, SMEM_PADDR, and
SMEM_VADDR. With driver Version 2.0.x only
SMEM_VADDR is supported and must be set. With
driver Version 2.1 the flags are defined as follows:
SMEM_PADDR

reserved for future extensions.

SMEM_VADDR
If this flag is set, the standard method of setting
up the shared memory buffer is used.

Due to hardware limitations, the VMEbus address
to which the shared memory is actually mapped
might differ from the requested one. Refer to the
Release Notes for information on address offsets
which are to be expected for the hardware under
consideration.

Currently this flag must be set. It may be com-
bined with the flags described below.

SMEM_FIXED
If this flag is set, the VMEbus nexus driver sets
up the shared memory at exactly the requested
VMEbus address, provided that the requested
VMEbus address is aligned to page boundary.

The decoded VMEbus address range might be
larger than the shared memory address range.

Using this flag might fragment system resources
more than not using the flag.

See the Release Notes whether this flag is sup-
ported for the CPU board under consideration.

Table 11 vdi_smem_req struct members (cont.)
Solaris VMEbus Driver Page 151

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

not

avail-

ress
smemlimp
pointer to the shared memory limit structure. The structure
vdi_smem_lim is defined in vdi_types.h. Driver versions 2.0.x
ignore this structure. With driver version 2.1 this structure is used to
support the specification of memory addresses via SMEM_FIXED (see
table 11 “vdi_smem_req struct members” on page 150).

typedef struct vdi_smem_lim
{

ulong_t slim_smem_lo;
ulong_t slim_smem_hi;
ulong_t slim_vme_lo;
ulong_t slim_vme_hi;
uint_t slim_vme_size;

}
vdi_smem_lim_t;

handlep
pointer to a pointer to a SMEM handle to be allocated and filled in.

RETURN
VALUES

VDI_SUCCESS
memory was mapped successfully.

VDI_FAILURE
handle contains invalid values, or the VME interface hardware is
capable to cover the requested address range.

VDI_NOSPACE
the resources which are required to generate the mapping are not
able.

VDI_CONFLICT
another window with the same bus properties exists, whose add
range overlaps with the one needed to fulfil the actual request.

Table 12 vdi_smem_lim struct members

slim_smem_lo Low range of mapped shared memory

slim_smem_hi Upper inclusive bound

slim_vme_lo Low range of decoded VMEbus range

slim_vme_hi Upper inclusive bound

slim_vme_size Maximum size of decoded range
Page 152 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions
EXAMPLE /* slave memory limitations */
static vdi_smem_lim_t smem_lim =
{
 (ulong_t) 0x00000000, /* Low range of mapped smem */
 (ulong_t) -1, /* High Limit, upper inclusive bound */
 (ulong_t) 0x00000000, /* Low range decoded VME range */
 (ulong_t) -1, /* High limit, upper inclusive bound */
 (uint_t) -1 /* Max size of decoded range */
};
...

{
vdi_smem_handle_t *handlept;
vdi_smem_req_t smemreq;
...
/* Allocate some memory for the slave window */
if (vdi_smem_alloc(0x100, &handlept))
{

cmn_err(CE_WARN,
"cannot allocate space for len %d",
(int)0x100);

return ERROR;
}

/* Fill request struct */
smemreq.smemr_bt = VME_BT_A32 | VME_BT_D32;
smemreq.smemr_offset = 0x60000000;
smemreq.smemr_size = 0x100;
smemreq.smemr_flags = SMEM_VADDR;

/* Map and enable the slave memory */
if (vdi_smem_map(&smemreq, &smem_lim, handlept))
{

/* error */
vdi_smem_free(handlept);
return ERROR;

}
if (vdi_smem_enable(handlept))
{

/* error */
vdi_smem_unmap(handlept);
vdi_smem_free(handlept);
return ERROR;

}

...

/* Remove the slave memory */
vdi_smem_unmap(handlept);
vdi_smem_free(handlept);
}
...
return OK;
Solaris VMEbus Driver Page 153

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

149

ver.
as-

So-

this

62).

 by
 bus

per-

n

5.4.26 vdi_smem_enable()

SYNTAX #include <sys/vdi.h>
int vdi_smem_enable(vdi_smem_handle_t *handlep);

DESCRIPTION vdi_smem_enable()
enables access to the shared on-board memory. May only be called af-
ter vdi_smem_map().

VARIABLES handlep
pointer to a SMEM handle.

RETURN
VALUES

VDI_SUCCESS
memory successfully enabled or disabled

VDI_FAILURE
handle contains invalid values

EXAMPLE see section 5.4.25 “vdi_smem_map(), vdi_smem_unmap()” on page

5.4.27 vdi_transfer_set(), vdi_transfer_get()

SYNTAX #include <sys/vdi.h>
int vdi_transfer_set(dev_info_t *dip, bt_t tm)
int vdi_transfer_get(dev_info_t *dip, bt_t *tm)
int vdi_transfer_free(dev_info_t *dip)

DESCRIPTION vdi_transfer_set()
controls in parts the setup of master windows for the specified dri
This function is the only way to pass extended information about m
ter window properties to the VME nexus driver via the standard
laris mapping call ddi_map_regs(9f).

Only the following subset of bus property literals can be used by
function: VME_BT_PF, ~_PRIAUTO, ~_PROGAUTO, ~_UNALIGN,
~_WP (see section 6.3 “Miscellaneous Bus Properties” on page 1
These are combined by the bit mask VME_BT_TMASK.

– The subset of available bus property literals may be restricted
hardware dependencies: not every hardware allows to set the
properties on a per range basis.

– If a driver does not use vdi_transfer_set() and
VME:vme_master_defaults is not used in /etc/system
(see section 3.1 “Configuration” on page 17), the standard pro
ties of the VME nexus driver will be used.

– If vdi_transfer_set() is used, the properties defined whe
calling vdi_transfer_set() will be used for all VME master
windows that will be set up via ddi_map_regs(9f) or
Page 154 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

hen

x-
vdi_map() for the specified driver. Existing mappings are not
affected.

vdi_transfer_get()
returns the mode reservations for the specified device.

vdi_transfer_free()
deletes the transfer mode reservation for the specified driver. This
means that the VME nexus driver’s default values will be used w
master windows are set up for this driver using ddi_map_regs(9f)
or vdi_map().

VARIABLES dip
device's information pointer: specifies the driver

tm
transfer modes to set. Only the bits masked by VME_BT_TMASK are
used (see sys/vme_types.h).

RETURN
VALUES

vdi_transfer_get() returns VDI_SUCCESS if a transfer mode
was set for the specified driver or VDI_FAILURE if not.

vdi_transfer_free() always returns VDI_SUCCESS.

vdi_transfer_set() returns VDI_SUCCESS if successful. It re-
turns VDI_FAILURE if the maximum number of transfer modes is e
ceeded or no kernel memory can be allocated.

EXAMPLE {
bt_t bt = VME_BT_WP;
...
/* Enable write posting for all future master windows,
 * disable all other transfer modes
 */
if (VDI_SUCCESS != vdi_transfer_set(vmeplusdip, bt))
{

… /* ERROR */
}
...
if (VDI_SUCCESS != vdi_transfer_get(vmeplusdip, &bt))
{

… /* ERROR */
}
...
/* Use the Nexus’ default settings for future master
 * windows
 */
(void)vdi_transfer_free(vmeplusdip))

...
}

Solaris VMEbus Driver Page 155

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide

e

as
5.4.28 vdi_virq_trigger(), vdi_virq_ackwait()

SYNTAX #include <sys/vdi.h>
int vdi_virq_trigger(int level, int vector,

long timeout, u_int flags);
int vdi_virq_ackwait (int level, long timeout, u_int flags);

DESCRIPTION As of Solaris VMEbus Driver release 2.1, assertion of VMEbus interrupts
and specifying a time-out for the IACK cycle is supported in general by
the software package.

Note: Not all CPU boards support this feature. Refer to the Release
Notes for limitations and hardware dependencies.

If the requested time expires, an error is reported. This may be necessary
for error recovery if the VMEbus interrupt handler does not acknowledge
interrupts as it is expected to do.
The timer resolution is in system ticks, e.g. it is 10 ms in Solaris 2.5.

vdi_virq_trigger()
triggers an interrupt and waits until the acknowledge cycle has fin-
ished.

vdi_virq_ackwait()
waits until the most recent interrupt request has been acknowledged.
This is not necessary if vdi_virq_trigger() has successfully ac-
knowledged the interrupt already.

VARIABLES level
interrupt level to be triggered

vector
interrupt vector to be triggered (only for vdi_virq_trigger())

timeout
is a value in clock ticks that specifies the maximum time to wait for the
IACK cycle to complete.

flags
is a bit mask which can be used to control various properties. The fol-
lowing bits are defined:

– VIACK_DONTWAIT
If set to 1, the function returns immediately without waiting for th
IACK cycle to finish. This flag is mutually exclusive with the
VIACK_ENDLESS flag. Setting VIACK_DONTWAIT makes the
timeout parameter obsolete.

– VIACK_ENDLESS
If set to 1, the function does not return until the IACK cycle h
Page 156 Solaris VMEbus Driver

Device Driver Developer’s Guide VDI Functions

it-
.

he
t
ully
av-

e-
e
s
d
K
e,

tor

rns
r-

at it
 ac-

tion

est-
been completed. This flag is mutually exclusive with the
VIACK_DONTWAIT flag. Setting this flags makes the timeout
parameter obsolete.

– VIACK_INTERRUPTIBLE
If set to 1, the function may be interrupted by a signal while wa
ing for an interrupt acknowledge. If set to 0, it is not interruptible

– P_VIACK_DONTWAIT (vdi_virq_trigger() only)
If some thread is still waiting for an IACK to be completed at t
time vdi_virq_trigger() is called, the calling thread migh
block until the other thread either completes the IACK successf
or decides to stop waiting. If it decides to stop waiting, the beh
ior of vdi_virq_trigger() depends on the
P_VIACK_DONTWAIT flag.

If P_VIACK_DONTWAIT is cleared, vdi_virq_trigger()
waits for the old IACK to be completed with the given wait crit
ria. If a timeout occurs, the function fails with return valu
VDI_BUSY. If no timeout occurs (meaning that the previou
IACK has finally completed in time), it will trigger the requeste
interrupt and use the timing criteria again to wait for its own IAC
cycle to complete. If the timing citeria are violated this tim
vdi_virq_trigger() will fail with return value
VDI_TIMEOUT.

If P_VIACK_DONTWAIT is set, vdi_virq_trigger() fails
immediately with return value VDI_BUSY if it detects that a pend-
ing IACK prevents the interrupt to be triggered and the origina
has stopped waiting for it.

RETURN
VALUES

VDI_SUCCESS
the interrupt was triggered by vdi_virq_trigger() and the
IACK cycle completed successfully (unless VIACK_DONTWAIT was
set in the request structure; in this case, the function retu
VDI_SUCCESS immediately after successfully asserting the inte
rupt).

VDI_BUSY
The last IACK cycle on this level has not been finished yet. Note th
is not possible to remove an interrupt request that has not been
knowledged yet because this is forbidden by the VMEbus specifica
(see also the description for P_VIACK_DONTWAIT above).

VDI_TIMEOUT
The IACK cycle for the given request did not complete in the requ
ed amount of time.

VDI_FAILURE
invalid parameters
Solaris VMEbus Driver Page 157

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

VDI Functions Device Driver Developer’s Guide
Page 158 Solaris VMEbus Driver

VME Bus Properties

-
all
.

bus
r use
 To
s the

ows.
 mas-
ers
us

 the
6 VME Bus Properties

When dealing with VMEbus accesses, be it master/slave windows, mail-
boxes, DMA transfers, or others, it is necessary to specify the properties
of the VMEbus transaction (like for example address space or data).

Solaris bus types Traditionally, Solaris defines the “bus types” mentioned above in
/usr/include/sys/bustypes.h. All Solaris bus types are sup
ported within the VME driver. However, the definitions do not cover
aspects and features provided by Force Computers’ VMEbus drivers

Extended
bus type
concept:
bus property

To cover all aspects and features provided by Force Computers’ VME
drivers, an extension of the bus type concept has been designed fo
with the application and driver interfaces described in this manual.
easily distinguish the 2 concepts, the Force Computers extension use
term “bus property” instead of “bus type”.

A bus property as supported by Force Computers’ VMEbus drivers

• is a bit set of type bt_t,

• with bits denoted by the VME_BT_prop macros described in this
section and defined in sys/vme_types.h.

Global and per-
range bus
properties

To allow access to the VMEbus, the driver has to set up master wind
Depending on the hardware, some properties can be applied to each
ter window individually (for example the VMEbus address space), oth
only globally to all windows. The first are referred to as “per range” b
properties, the latter as “global” bus properties.
The same applies to slave windows, which are needed to operate
board in slave mode.
Solaris VMEbus Driver Page 159

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Address Spaces – VME_BT_Axx and VME_BT_CRCSR VME Bus Properties

ndow

 or
t

 can
6.1 Address Spaces – VME_BT_Axx and VME_BT_CRCSR

The VME_BT_Axx and VME_BT_CRCSR literals define the address
space where a data transfer takes place.

• Interpretation for master windows: VME_BT_Axx literals specify the
address space used for VMEbus master accesses. A master wi
has one and only one address space property.

• Interpretation for slave windows: A slave window can have one
more of the VME_BT_Axx bus properties, meaning that it will accep
transfers in each of them. The same is true for mailboxes, which
reside in multiple address spaces as well.

VME_BT_A16 A16 address space (AM codes 2916 and 2D16).

VME_BT_A24 A24 address space (AM codes 3816 including 3F16)

VME_BT_A32 A32 address space (AM codes 0816 including 0F16)

VME_BT_A40 A40 address space (future extension)

VME_BT_A64 A64 address space (future extension)

VME_BT_CRCSR Allows access to the CR/CSR address space

VME_BT_AMASK A bit set combining all VME_BT_Axx and VME_BT_CRCSR literals.
Page 160 Solaris VMEbus Driver

VME Bus Properties Data Modes – VME_BT_Dxx

ked
n
rmed
true
ns-

-
as

s
a

rop-
d by
hich
6.2 Data Modes – VME_BT_Dxx

The VME_BT_Dxx literals describe the way data is transferred, i.e. the
data width or the kind of burst (block) transfer.

• Interpretation for master windows: A master window can be mar
with any combination of VME_BT_Dxx literals, each one denoting a
access width from the host bus (e.g. SBus) that can be transfo
into the corresponding access width on the VMEbus. This is also
for local bus burst transfers, which may cause a VMEbus block tra
fer if the corresponding bus property bit is set.

If the VME_BT_DAUTO property is set, the VMEbus interface hard
ware will resize accesses of widths which do not appear
VME_BT_Dxx literal into accesses that are possible. Example:

A master window with data bus propertie
VME_BT_D8|VME_BT_DAUTO resizes all kinds of local bus dat
widths to 8 bit accesses on the VMEbus.

• Interpretation for slave windows and mailboxes: The data bus p
erty literals denote the VMEbus access widths which are decode
the slave window to some kind of local bus master access or w
cause a mailbox interrupt, respectively.

VME_BT_D8 8 data bits, single cycle transfer.

VME_BT_D16 16 data bits, single cycle transfer.

VME_BT_D32 32 data bits, single cycle transfer.

VME_BT_D64 64 data bits, single cycle transfer (future extension).

VME_BT_DAUTO Automatic data resize. This is only meaningful for master windows.

VME_BT_BLT Block transfer.

VME_BT_MBLT Multiplexed block transfer.

VME_BT_2EVME 2eVME transfer.

VME_BT_DMASK A bit set combining all literals mentioned above (VME_BT_D8, …,
VME_BT_2EVME).
Solaris VMEbus Driver Page 161

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Miscellaneous Bus Properties VME Bus Properties

erty

w,
c-

 to
use

ce

E-

s
spec-

 for

bus

erty

w,
ed
e

, but

the
ost

d
is

o-
ly
6.3 Miscellaneous Bus Properties

The literals described in this section define miscellaneous VMEbus bus
properties.

• The interpretation for master windows depends on other bus prop
bits being set:

– If the “write posting” bus property bit is set for a master windo
the VMEbus interface hardware will acknowledge write transa
tions to the VMEbus immediately without waiting for the access
finish. This typically increases the transfer speed, but may ca
problems when an error conditions occurs.

– If the “data prefetch” bus property bit is set, the VMEbus interfa
hardware will perform “read ahead” on the VMEbus.

– If the VME_BT_NPRV bus property bit is set, non-privileged
VMEbus AM codes are generated. If it is cleared, privileged VM
bus AM codes are generated.

– If the VME_BT_PROG bus property bit is set, program AM code
are generated. If it is cleared, data AM codes are generated re
tively.

– There are 2 programmable AM codes available for example
FGA-5100 based CPU boards. VME_BT_PAMCx literals specify
the address space of the programmable AM code used for VME
master accesses.

• The interpretation for slave windows depends on other bus prop
bits being set:

– If the “write posting” bus property bit is set for a slave windo
VMEbus write accesses to the slave window will be acknowledg
immediately to the originating master without waiting for th
transaction to finish. This typically increases the transfer speed
causes problems when an error conditions occurs.

– If the “data prefetch” bus property bit is set for a slave window,
VMEbus interface hardware will perform “read ahead” on the h
bus.

– If the VME_BT_NPRV bus property bit is set, both privileged an
non-privileged VMEbus AM codes will be accepted. If it
cleared, only privileged AM codes will be accepted.

– If the VME_BT_PROG bus property bit is set, both data and pr
gram VMEbus AM codes will be accepted. If it is cleared, on
data AM codes will be accepted.

VME_BT_MMASK A bit mask combining all miscellaneous bus properties.
Page 162 Solaris VMEbus Driver

VME Bus Properties Miscellaneous Bus Properties
VME_BT_PAMASK A bit set combining all VME_BT_PAMCx literals.

VME_BT_PAMC1 First programmable AM code.

= 1 selected

= 0 de-selected

VME_BT_PAMC2 Second programmable AM code.

= 1 selected

= 0 de-selected

VME_BT_PF Data read prefetch enable.

= 1 enable

= 0 disable

VME_BT_PRIAUTO Automatic privileged/non-privileged AM code generation, depending
on the state of the processor. Only valid for master windows.

= 1 generate supervisory or user AM codes depending on the mode the pro-
cessor is currently running in

= 0 disable this feature

VME_BT_PROG Program access AM code enable.

= 1 generate program AM codes

= 0 generate data AM codes

VME_BT_PROGAUTO Automatic program/data AM code generation depending on the type of
access the processor does. Only valid for master windows.

= 1 generate program or data AM codes depending on the type of access

= 0 disable this feature

VME_BT_NPRV Non-privileged AM code enable.

Compatibility note VME_BT_NPRV

Note: The name of VME_BT_NPRV used to be VME_BT_USER in
previous releases. Both names can be used though VME_BT_NPRV is
preferred.

= 1 generate non-privileged (user) AM codes

= 0 generate privileged (supervisory) AM codes

VME_BT_TMASK A bit mask combining all bus properties which can be used in combina-
tion with the vui_transfer_mode_set/~_get functions (see
page 40) and the vdi_transfer_set/~_get functions (see
Solaris VMEbus Driver Page 163

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Miscellaneous Bus Properties VME Bus Properties
page 154): VME_BT_PF, ~_PRIAUTO, ~_PROG, ~_PROGAUTO,
~_UNALIGN, ~_USER, ~_WP.

VME_BT_UNALIGN Unaligned accesses possible

= 1 allow unaligned accesses

= 0 prohibit unaligned accesses

VME_BT_USER See “Compatibility note VME_BT_NPRV” on page 163.

VME_BT_WP Write posting enable.

= 1 enable

= 0 disable

VME_BT_RESERVED Reserved bit.
Page 164 Solaris VMEbus Driver

System Messages Panic Messages

sible

 er-
ause

ault

 as
ng
ng”

 on
ault
7 System Messages

This section lists the drivers’ system messages and documents pos
causes.

7.1 Panic Messages

PANIC: SBus virt. address: xx (no IOMMU mapping?)

A VMEbus master accessed the local CPU’s slave window and an
ror occurred. The error was not acknowledged to the master bec
the slave window was marked write posted. For information on
changing the system’s behavior, see section 5.3 “Nexus Driver F
Handling” on page 107.

PANIC: no sbus node

The sbus node is missing in the device tree.

WARNING: S-to-VME Write Posting error at vme-xx
PANIC: panic

A VMEbus write access performed via a master window marked
write posted resulted in a bus error. For information on changi
the system’s behavior, see section 5.3 “Nexus Driver Fault Handli
on page 107.

PANIC: VME=xxx BT=xxx

A VMEbus write access resulted in a bus error. For information
changing the system’s behavior, see section 5.3 “Nexus Driver F
Handling” on page 107.
Solaris VMEbus Driver Page 165

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Warnings System Messages

s
n

es-
exus

n the
the
”

r
on-

. The

7).

gina-
avior

ich
 write

se it
cess
l ap-
s oc-
7.2 Warnings

Errors on the
VMEbus

VMEbus transactions which terminate with a BERR are usually logged
on the console. The information printed consists of

• the VMEbus address where the fault occurred, and

• a “bus property” bit set (“BT=” or “BP=”), which basically encode
the VME AM code (see section 6 “VME Bus Properties” o
page 159).

Beneath the VMEbus related information, there might be additional m
sages visible which show the errors reported by the underlying bus n
driver.

WARNING: Async Fault from S-to-VME (superv.)
WARNING: VME=xx BT=yy

Caused by a kernel access an asynchronous write error occurred o
VMEbus. The behavior on write errors can be controlled via
/etc/system file (see section 5.3 “Nexus Driver Fault Handling
on page 107).

WARNING: Async Fault from S-to-VME (non-priv)
WARNING: VME=xx BT=yy

Caused by a process access via mmap() an asynchronous write erro
occurred on the VMEbus. The behavior on write errors can be c
trolled via the /etc/system file (see section 5.3 “Nexus Driver
Fault Handling” on page 107).

WARNING: VME synchronous error: ctx=xx VME=yy BT=zz

Caused by a kernel access a read error occurred on the VMEbus
behavior on kernel read errors can be controlled via the /etc/sys-
tem file (see section 5.3 “Nexus Driver Fault Handling” on page 10

WARNING: L-to-VME Write Posting error at vme xxx

A write posted VMEbus master access caused an error and the ori
tor of the access (the process) could not be determined. The beh
on write posted errors can be controlled via the /etc/system file
(see section 5.3 “Nexus Driver Fault Handling” on page 107).

WARNING: (VME): VME Slave to Local Bus posted write error

A VMEbus master accessed the local CPU via a slave window wh
was set up as write posted and an error occurred. The behavior on
posted slave access errors can be controlled via the /etc/system
file (see section 5.3 “Nexus Driver Fault Handling” on page 107).

WARNING: vmectl: could not send sig. xxx to process yyy

A process has set up a signal for a VMEbus event but did not relea
properly. The event occurred and the driver detected that the pro
that owned the event does not exist any more. This message wil
pear only once, the driver releases events after this situation ha
curred.
Page 166 Solaris VMEbus Driver

System Messages Warnings

ec-

uld

U
 set
-
.

red.

(e.g.

y

ed

igh
led,
ing

l is
WARNING: vector xxx handles more than one VME IRQ

One interrupt vector is defined for several interrupt levels. Make sure
that this is what you intended.

WARNING: spurious VMEbus interrupt on level xx, vec yy

An interrupt acknowledge cycle resulted in an interrupt vector for
which no interrupt handler was defined. Make sure you specified the
correct interrupt vector for your hardware in the driver.conf file.

WARNING: vme: no interrupt vector for VME IRQ xx

A device has triggered an interrupt but didn’t provide an interrupt v
tor.

WARNING: vme_attach: vdi_init failed

or
WARNING: vdi_init: vhi_init failed

Proper hardware was detected by the VME nexus driver but it co
not be initialized.

WARNING: VME: VME DMA not possible, set the slavewin
property in VME.conf

Some device driver tried to initiate a DMA transfer to the local CP
by means of the DDI DMA interface. To do so, it is necessary to
the slavewin property in the configuration file of the VMEbus nex
us driver (see section 5.1.2 “Slave Window Property” on page 103)

WARNING: VME DMA ERR on VMEbus addr xx

A DMA transfer aborted because a bus error on the VMEbus occur

WARNING: VME DMA ERR on local addr xx

A DMA transfer aborted because a bus error on the host bus
SBus) occurred.

NOTICE: vmeplus_segmap: No reg property

A mapping request failed because there was no reg property in the
configuration file of vmeplus. Normally, it should not be necessar
to touch the reg property entries in this file.

WARNING: map_slave(): cannot allocate fdma space for len xxx

The fast DMA driver failed to allocate a DMA buffer of the request
size.

WARNING: vmeplus_intr: ringbuffer is full, dropped interrupt <n>

The vmeplus driver uses a ring-buffer to process information for h
level interrupts. If the driver gets more interrupts than can be hand
the ring buffer may overflow and interrupt events get lost. The r
buffer size may be incremented by setting the vmeplus:rb_size
variable in /etc/system appropriately.

WARNING: vme0: <driver>: VME level <n> in use or grabbed

A device driver has made an attempt

– to either grab the specified VMEbus interrupt level, but this leve
already used by another interrupt handler,
Solaris VMEbus Driver Page 167

20
49

36
 9

 –
 0

 J
an

ua
ry

 2
00

0

Notices System Messages

 but

the
 not
– or to set up a vectored interrupt handler for the specified level,
this level is already grabbed by another interrupt handler.

7.3 Notices

NOTICE: VME fault handling is OFF!

This message occurs if the VME:vme_fault_hndl_off flag has
been set in /etc/system. Errors on the VMEbus will most likely
cause the system to panic.

NOTICE: vdi_smem_map: SMEM_FIXED not supported

or
NOTICE: vdi_smem_map: PADDR not supported

Allocation of slave memory or DMA buffer space failed because
flags parameter of the request contains an entry that is currently
supported on the underlying architecture.
Page 168 Solaris VMEbus Driver

Product Error Report

✉ Send this report to the nearest Force Computers headquarter listed on the back of
the title page.

PRODUCT: SERIAL NO.:

DATE OF PURCHASE: ORIGINATOR:

COMPANY: POINT OF CONTACT:

TEL.: EXT.:

ADDRESS:

PRESENT DATE:

AFFECTED PRODUCT:

❏ HARDWARE ❏ SOFTWARE ❏ SYSTEMS

AFFECTED DOCUMENTATION:

❏ HARDWARE ❏ SOFTWARE ❏ SYSTEMS

ERROR DESCRIPTION:

THIS AREA TO BE COMPLETED BY FORCE COMPUTERS:

DATE:

PR#:

RESPONSIBLE DEPT.: ❏ MARKETING ❏ PRODUCTION

ENGINEERING ➠ ❏ BOARD ❏ SYSTEMS

	Solaris VMEbus Driver
	Using This Manual
	Table a History of manual editions
	Table b Fonts, notations and conventions

	1 Safety Notes
	2 Introduction
	Figure�1 Architecture of the Solaris VMEbus Driver package
	Figure�2 Sample device access hierarchy
	2.1 Software Interface Features
	2.2 Comparing the Old-Style to the New-Style Driver
	2.2.1 vme_xxx() Functions
	2.2.2 Device Names
	Table 1 Changed device names for block and mblock devices

	2.2.3 ioctl()
	Table 2 ioctl() support by the new-style driver�
	Table 3 Relating old-style to new-style driver ioctl() requests�

	2.3 Examples

	3 Installation and Configuration Guide
	3.1 Configuration
	3.2 Basic Test of the Driver
	3.3 Troubleshooting
	3.4 Limitations

	4 Application Programmer’s Guide
	4.1 vmeplus
	4.1.1 open(), close()
	4.1.2 read(), write()
	4.1.3 mmap(), munmap()
	4.1.4 ioctl()
	4.1.5 vui_intr_ena(), vui_intr_dis()
	4.1.6 vui_rmw()
	4.1.7 vui_�transfer_�mode_�set(), vui_transfer_mode_get()

	4.2 vmedma
	4.2.1 open(), close()
	4.2.2 read(), write()
	4.2.3 ioctl()
	4.2.4 vui_dma_malloc()

	4.3 vmefdma
	4.3.1 open(), close()
	4.3.2 read(), write()
	4.3.3 mmap(), munmap()
	4.3.4 ioctl()
	4.3.5 vui_fdma_malloc(), vui_fdma_free()

	4.4 vmedvma
	4.4.1 open(), close()
	4.4.2 read(), write()
	4.4.3 mmap(), munmap()
	4.4.4 ioctl()
	4.4.5 vui_slave_map(), vui_slave_unmap()

	4.5 vmectl
	4.5.1 open(), close()
	4.5.2 ioctl()
	4.5.3 vui_abort_signal(), vui_abort_wait()
	4.5.4 vui_acfail_signal(), vui_acfail_wait()
	4.5.5 vui_arb_mode_set(), vui_arb_mode_get()
	4.5.6 vui_board()
	4.5.7 vui_bus_rel_mode_set(), vui_bus_rel_mode_get()
	4.5.8 vui_bus_req_level_set(), vui_bus_req_level_get()
	4.5.9 vui_bus_req_mode_set(), vui_bus_req_mode_get()
	4.5.10 vui_interface()
	4.5.11 vui_intr_generate()
	4.5.12 vui_mbox_info()
	4.5.13 vui_mbox_set(), vui_mbox_remove()
	4.5.14 vui_mbox_wait()
	4.5.15 vui_mbox_control()
	Table 4 Mailbox Control operations�

	4.5.16 vui_reg_base_set(), vui_reg_base_get()
	4.5.17 vui_reg_read(), vui_reg_write()
	4.5.18 vui_reset()
	4.5.19 vui_sysfail_assert(), vui_sysfail_deassert()
	4.5.20 vui_(n)sysfail_wait(), vui_(n)sysfail_signal()
	4.5.21 vui_error_info()

	5 Device Driver Developer’s Guide
	5.1 VME Nexus Driver Configuration
	5.1.1 Master Window Properties
	5.1.2 Slave Window Property

	5.2 Device Driver Properties
	5.2.1 Non-Vectored Interrupter Handling
	5.2.2 VMEbus Mappings
	Table 5 Data width encoding

	5.3 Nexus Driver Fault Handling
	5.4 VDI Functions
	Table 6 Overview of VDI functions�
	5.4.1 Calling VDI functions
	5.4.2 vdi_arb_mode_set(), vdi_arb_mode_get()
	Table 7 Arbitration modes

	5.4.3 vdi_attach
	5.4.4 vdi_brel_set(), vdi_brel_get()
	Table 8 Bus release modes

	5.4.5 vdi_breq_set(), vdi_breq_get()
	Table 9 Bus request modes

	5.4.6 vdi_brl_set(), vdi_brl_get()
	5.4.7 vdi_dma_start()
	5.4.8 vdi_dmac_alloc_handle()
	5.4.9 vdi_error_info()
	5.4.10 vdi_event_setup(), vdi_event_release()
	Table 10 VMEbus events

	5.4.11 vdi_info()
	5.4.12 vdi_intr_acknowledge()
	5.4.13 vdi_intr_generate()
	5.4.14 vdi_map(), vdi_unmap()
	5.4.15 vdi_map_abs(), vdi_map_regspec()
	5.4.16 vdi_mbox_attach(), vdi_mbox_detach()
	5.4.17 vdi_mbox_enable(), vdi_mbox_disable()
	5.4.18 vdi_mbox_getinfo()
	5.4.19 vdi_mbox_iblock_cookie(), vdi_mbox_hilevel()
	5.4.20 vdi_reg_read(), vdi_reg_write()
	5.4.21 vdi_regslave_set(), vdi_regslave_get()
	5.4.22 vdi_rmw()
	5.4.23 vdi_reg_space
	5.4.24 vdi_smem_alloc(), vdi_smem_free()
	5.4.25 vdi_smem_map(), vdi_smem_unmap()
	Table 11 vdi_smem_req struct members�
	Table 12 vdi_smem_lim struct members

	5.4.26 vdi_smem_enable()
	5.4.27 vdi_transfer_set(), vdi_transfer_get()
	5.4.28 vdi_virq_trigger(), vdi_virq_ackwait()

	6 VME Bus Properties
	6.1 Address Spaces – VME_BT_Axx and VME_BT_CRCSR
	6.2 Data Modes – VME_BT_Dxx
	6.3 Miscellaneous Bus Properties

	7 System Messages
	7.1 Panic Messages
	7.2 Warnings
	7.3 Notices

